Drücken Sie die Tabulatortaste um den Bildschirmleser Modus zu aktivieren
  • Startseite
  • Sprache
  • Navigationsmenu
  • Suche
  • Leichte Sprache
  • Inhalt
  • Kontakt
MENU
Logo Schweizerischer Erdbebendienst ETH logo
DE EN FR IT
Leichte Sprache
DE EN FR IT
×
  • Startseite
  • Erdbeben
    • Schweiz
    • Europa
    • Welt
    • Karten
    • Melden Sie ein Erdbeben
    • Was tun?
      • Verhaltensempfehlungen
      • Erdbeben im Ausland
      • Erdbebengerechtes Bauen
      • Erdbebenversicherung
    • Jederzeit informiert
      • Alarmierung
      • Informationen erhalten
      • Schnelle Schadensabschätzungen
      • ShakeMap
      • Erdbebenmeldungen
  • Überwachung
    • Erdbeben messen
    • Nationales seismisches Netzwerk
    • Spezialnetzwerke
      • Übersicht
      • Geothermie Haute-Sorne
      • Geothermie Yverdon-les-Bains
      • Geothermie Genfer Becken
      • Geothermie Vinzel
      • Tiefenlager Nordostschweiz
      • Überwachung Tiefenbohrung Basel-1
      • Vergangene Projekte
    • Echtzeit-Seismogramme
      • Letzte 5 Minuten
      • Letzte 20 Minuten
      • Letzte 2 Stunden
      • Letzte 24 Stunden
    • Aufbau einer Messstation
    • Atomteststoppüberwachung
  • Erdbebenland Schweiz
    • Übersicht
    • Gefährdung
      • Übersicht
      • Komponenten
      • Erdbebengefährdungsmodell
    • Risiko
      • Übersicht
      • Komponenten
      • Erdbebenrisikomodell
      • Erdbebenrisikotool
    • Erdbebenszenarien
    • Erdbebenregionen
      • Graubünden
      • Wallis
      • Basel
    • Historische Erdbeben
      • Die zehn stärksten
      • Basel 1356
      • Sierre 1946
    • Erdbebenschwärme
      • Einleitung
      • Sarnen 1964
      • Diemtigen 2014 - 2015
  • Wissen
    • Ursachen von Erdbeben
      • Im Allgemeinen
      • In der Schweiz
      • In Europa
      • Induzierte Erdbeben
    • Auswirkungen von Erdbeben
    • Erdbebenvorhersage
    • Erdbebendaten und Webportale
      • Übersicht
      • Erdbebenüberwachungs-Software
      • Stationsinformationen
      • Erdbebenkataloge
      • Wellenformdaten
      • FDSN web services
      • Erdbebenfrühwarnung
      • ShakeMap
      • Ältere Softwares
    • Geothermie & Erdbeben
      • Geothermie in Kürze
      • Formen der Geothermie
      • Geothermie & induzierte Erdbeben
      • Massnahmen zur Eindämmung induzierter Seismizität
      • Geothermie in der Schweiz
      • Geothermie und der SED
      • Kompetente seismologische Beratung (GEOBEST2020+)
      • Fracking
    • Beben auf dem Mars
    • Häufig gestellte Fragen (FAQ)
  • Forschung & Lehre
    • Projekte
    • Publikationen
    • Lehre & Ausbildung
    • Schatzalp Workshop 2025
  • Aktuelles & Angebote
    • Aktuellbeiträge
      • 2025
      • 2024
      • Archiv
    • Für Schulen
    • Informationsbroschüren
    • Quiz
    • Videos & Spiele
    • Erdbebensimulator
    • Erdbebenliteratur
  • Über uns
    • Kontakt & Medienanfragen
    • Porträt
      • Aufgaben & Organisation
      • Geschichte
      • Unabhängigkeit & Transparenz
    • Sektionen
    • Alle Mitarbeitenden
    • Karriere
    • Kooperationen
    • Intranet
Der Seiteninhalt beginnt hier

GEOTHERM-2

  • Übersicht
  • Publikationen
Projektbild

GEOTHERM-2 conducts cross-disciplinary research towards the development of Enhanced Geothermal Systems (EGS). EGS is a technology that will allow the heat resources residing at several kilometers depths to be exploited for electricity and heat production. At present, EGS technology is not mature; two of the key challenges are the difficulty of (1) engineering a lasting heat exchanger with appropriate properties within deep, hot, low-porosity rocks, and (2) the risk of inducing felt and potentially hazardous seismic events during the development and operation of the heat exchanger.

GEOTHERM-2 continues the work initiate in the GEOTHERM-1 project (2009-2012). The project was conceived in order to provide a bridge to a major nationwide project in geothermal energy, the Swiss Competence Center Energy Research-Supply of Energy (SCCER-SoE), that was in its planning phase when GEOTHERM-2 was proposed, and has begun in the meantime.

In total thirty eight co-workers from various Departments and Institutes in ETH and in EPFL, and of the Paul Scherrer Institute contribute to the project.

The main strength of GEOTHERM-2 is to adopt a cross-disciplinary approach to the challenges mentioned above. The contributions of GEOTHERM-2 in terms of scientific results, capacity building and knowledge transfer are a therefore critical intermediate step towards successful future Pilot and Demonstration projects, and complement the activities conducted in SCCER-SoE.

The research activities in GEOTHERM-2 are organized in six Modules or work packages, which are designed to:

  • Develop and test novel observational tools for the geomechanics of reservoir creation;
  • Assess and mitigate the risks associated with noticeable induced seismicity;
  • Assess potential accidental risks leading to health and environmental impacts as well as public perceptions of risks associated with geothermal energy development;
  • Expand a multi-scale – multi-process modeling code for simulating the process of reservoir generation as well as the longer-term evolution of the reservoir during production;
  • Investigate the effects of chemical reaction between fluid and rock on long-term permeability evolution and heat extraction from the reservoir;
  • Design a decision-support tool for optimizing the use of geothermal energy in cities, by quantifying all interacting factors including geological and economic parameters, conversion efficiency and temporal heat storage, complementary energy sources and societal acceptance.
SED Projektleitung

Prof. Dr. Stefan Wiemer

SED Projekt Mitglieder

Prof. Dr. Stefan Wiemer, Dr. Alba Zappone, Dr. Laurentiu Danciu, Dr. Pierre Dublanchet, Dr. Valentin Gischig, Dr. Dimitrios Karvounis, Eszter Király, Dr. Toni Kraft, Lukas Heiniger, Marcus Herrmann, Dr. Anne Obermann, Dr. Arnaud Mignan, Barbara Schechinger

Finanzierung

Competence Center Environment Sustainability (CCES), Competence Center Energy and Mobility (CCEM) and Bundesamt Für Energie (BFE)

Zeitdauer

2013 - 2016

Stichwörter

Energy, geothermy, multidisciplinary

Bereich

Induced Seismicity, Geomechanics, Geochemistry, energy conversion systems, Social Acceptance

Webseite http://www.sccer-soe.ch/research/geo-energy/task1.2/geotherm-2/

Deichmann N., Kraft T. and Evans K.F.  (2014). Identification of faults activated during the stimulation of the Basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events. Geothermics 52, 84-97. doi: 10.1016/j.geothermics.2014.04.001

Driesner, T. (2013). The Molecular-Scale Fundament of Geothermal Fluid Thermodynamics. Reviews in Mineralogy and Geochemistry 76, 5-33. doi: 10.2138/rmg.2013.76.2

Gischig, V., and Wiemer, S. (2013). A stochastic model for induced seismicity based on non-linearpressure diffusion and irreversible permeability enhancement. Geophys. J. Int.. doi: 10.1093/gji/ggt164

Hillers, G., Husen, S., Obermann, A., Planès, T., Campillo, M. and Larose, E. (2015). Noise based monitoring and imaging resolve reservoir dynamics associated with the 2006 Basel injection experiment. Geophysics 80(4), 51-68. doi: 10.1190/GEO2014-0455.1

Hingerl, F.F., Kosakowski, G., Wagner, T., Kulik, D.A. and Driesner, T. (2014). GEMSFIT: a generic fitting tool for geochemical activity models. Computational Geosciences 18(2), 227-242. doi: 10.1007/s10596-014-9405-3

Hingerl, F.F., Wagner, T., Kulik, D.A., Thomsen ,K. and Driesner, T. (2014). A new aqueous activity model for geothermal brines in the system Na-K-Ca-Mg-H-Cl-SO4-H2O from 25 to 300°C. Chem. Geol.  381, 78-93. doi: 10.1016/j.chemgeo.2014.05.007

Hirschberg, S., Wiemer, S. and Burgherr, P. (2015). Energy from the earth: Deep geothermal as a resource for the future?. TA-Swiss, Bern, Switzerland, 220-251. 

Kaiser, P.K., Valley, B., Dusseault, M.B. and Duff, D. (2013). Hydraulic Fracturing Mine Back Trials – Design Rational and Project status. In: Bunger, A.P., McLennan, J. and Jeffrey, R. : Effective and sustainable hydraulic fracturing. InTech. doi: 10.5772/56260

Kraft, T. and Deichmann, N. (2014). High precision relocation and focal mechanism of the injection induces seismicity at the Basel EGS. Geothermics 52, 59-73. doi: 10.1016/j.geothermics.2014.05.014

Obermann, A., Kraft, T., Larose, E. and Wiemer, S. (2015). Potential of ambient seismic noise techniques to monitor reservoir dynamics at the St. Gallen geothermal site (Switzerland). JGR. doi: 10.1002/2014JB011817

Preisig, G., Eberhardt, E., Gischig, V., Roche, V., van der Baan, M., Valley, B., Kaiser, P.K., Duff, D. and Lowther, R. (2015). Development of connected permeability in massive crystalline rocks through hydraulic fracture propagation and shearing accompanying fluid injection. Geofluids 15, 321-337. doi: 10.1111/gfl.12097

Rivera, J.A., Blum, P. and Bayer, P.  (2015). Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers. Applied Energy 146, 421-433. doi: 10.1016/j.apenergy.2015.02.035

Spada, M., Sutra, E., Wolf, S. and Burgherr, P.  (2014). Accident Risk Assessment for Deep Geothermal Energy Systems. In: Nowakowski, T., Mlynczak, M., Jodejko-Pietruczuk, A. and Werbinska-Woiciechowska, S.: Safety and Reliability: Methodology and Applications. Taylor and Francis Group, London UK. 

Stauffacher, M., Muggli, N., Scolobig, A. and Moser, C. (2015). Framing deep geothermal energy in mass media: the case of Switzerland. Technological Forecasting and Social Change 98, 60–70. doi: 10.1016/j.techfore.2015.05.018

Weis, P., Driesner, T., Coumou, D. and Geiger, S. (2014). Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids 14(3), 347-371. doi: 10.1111/gfl.12080

Zezin, D., Driesner, T. and Sanchez-Valle, C.  (2015). Volumetric Properties of Na2SO4–H2O and Na2SO4–NaCl–H2O Solutions to 523.15 K, 70 MPa. J. Chem. Eng. Data 60(4), 1181–1192. doi: 10.1021/je501152a

Zezin, D., Driesner, T. and Sanchez-Valle, C.  (2014). Volumetric Properties of Mixed Electrolyte Aqueous Solutions at Elevated Temperatures and Pressures. The System KCl–NaCl–H2O to 523.15 K, 40 MPa, and Ionic Strength from (0.1 to 5.8) mol·kg–1. Journal of Chemical and Engineering Data 59, 736-749. doi: 10.1021/je400761c

Schweizerischer Erdbebendienst
Sonneggstrasse 5
CH-8092 Zürich
Tel. SED Sekretariat
+41 44 633 21 79 (zu Bürozeiten)

Impressum | Disclaimer  | ©2024 ETH Zürich