Appuyez sur la touche de tabulation pour activer le mode lecteur d'écran.
  • Page d'accueil
  • Langue
  • Menu
  • Recherche
  • Langue facile à lire
  • Contenu
  • Contact
MENU
Logo Service Sismologique Suisse ETH logo
DE EN FR IT
Langue facile à lire
DE EN FR IT
×
  • Page d'accueil
  • Séismes
    • Suisse
    • Europe
    • Monde
    • Cartes
    • Signaler un séisme
    • Que faire?
      • Recommandations de comportement
      • Séisme à l’étranger
      • Construction parasismique
      • Assurance tremblements de terre
    • Bien informé en continu
      • Alertes
      • Recevoir des informations
      • Évaluations rapides des dégâts
      • ShakeMap
      • Annonces de tremblements de terre
  • Surveillance
    • Mesurer les tremblements de terre
    • Réseau national suisse
    • Réseaux spéciaux
      • Vue d'ensemble
      • Géothermie Haute-Sorne
      • Géothermie Yverdon-les-Bains
      • Géothermie bassin genevois
      • Géothermie Vinzel
      • Dépôt en profondeur Nord-est de la Suisse
      • Surveillance du forage profond Bâle-1
      • Projets antérieurs
    • Sismogrammes en temps réel
      • Fenêtre de 5 minutes
      • Fenêtre de 20 minutes
      • Fenêtre de 2 heures
      • Fenêtre de 24 heures
    • Réalisation d'une station de mesure
    • Surveillance du traité d'interdiction des essais nucléaires
  • La Suisse des tremblements de terre
    • Vue d'ensemble
    • Aléa
      • Aperçu
      • Composants
      • Modèle de l’aléa sismique
    • Risque
      • Aperçu
      • Composants
      • Modèle de risque sismique
      • Outil risque sismique
    • Scénarios sismiques
    • Régions sismiques
      • Grisons
      • Valais
      • Bâle
    • Tremblements de terre historiques
      • Les dix les plus puissants
      • Bâle 1356
      • Sierre 1946
    • Essaims de séismes
      • Introduction
      • Sarnen 1964
      • Diemtigen 2014 - 2015
  • Savoir
    • Causes des séismes
      • En général
      • En Suisse
      • En Europe
      • Tremblements de terre induits
    • Effets des séismes
    • Prévision sismiques
    • Données sismiques et portails web
      • Aperçu
      • Logiciels pour la surveillance des tremblements de terre
      • Informations sur les stations
      • Catalogues sismiques
      • Formes d’ondes
      • FDSN web services
      • Alerte précoce de tremblement de terre
      • ShakeMap
      • Logiciels anciens
    • Géothermie & séismes
      • Géothermie en bref
      • Formes de la géothermie
      • La géothermie & les séismes induits
      • Mesures d’endiguement de la sismicité induite
      • La géothermie en Suisse
      • La géothermie et le SED
      • Conseil sismologique compétent (GEOBEST2020+)
      • Fracturation hydraulique
    • Tremblement de Mars
    • Questions fréquemment posées (FAQ)
  • Recherche & enseignement
    • Projets
    • Publications
    • Enseignement & formation
    • Schatzalp Workshop 2025
  • Actualités & services
    • Articles d'actualité
      • 2025
      • 2024
      • Archive
    • Pour les écoles
    • Brochures d'information
    • Quiz
    • Vidéos & jeux
    • Simulateur de séismes
    • Bibliographie
  • Qui nous sommes
    • Contact & demandes de médias
    • Portrait
      • Tâches & organisation
      • Histoire
      • Indépendance & transparence
    • Sections
    • Tous les collaborateurs
    • Carrière
    • Coopérations
    • Intranet
Le contenu de la page commence ici

Site characterization research

  • Aperçu
  • Publications
Image du projet

This working group gathers the researchers with competences in site characterization in order to discuss and improve the work performed in different projects, especially for sites with new permanent seismic stations. The available tools for processing, archiving and disseminating are shared within the group. The group is responsible for setting up and updating the SED database for site characterization. The group meets regularly to discuss new results and to review the work before it is published.
So far, the group performed more than 250 ambient-vibration seismic array and MASW measurements, about 7000 single station horizontal-to-vertical spectral ratio measurements to determine the resonance frequencies of the soils, and 10 seismic cone penetration tests (SCPT) to assess the risk of potential liquefaction during earthquakes. Temporary seismic stations are also installed and managed to derive empirical amplification functions at sites of interest.

Chef de projet au SED

Prof. Donat Fäh

Membres du projet au SED

Paolo Bergamo, Dario Chieppa, Franziska Glüer, Miroslav Hallo, Mauro Häusler, Afifa Imtiaz, Agostiny Lontsi, Francesco Panzera, Paulina Janusz, Anastasiia Shynkarenko

Source de financement

Actual projects with site characterization work: Strong motion renewal project phase 2; Earthquake risk model for Switzerland; Earthquake risk model for Basel; 4D seismic response and slope failure; Lake Tsunamis: causes, consequences and hazard; and others)

Durée

2010 - present

Mots-clef

Site characterization, strong motion stations, broadband stations, site response, site effects, site amplification

Domaine de recherche

Earthquake Hazard & Risk, Engineering Seismology

Bergamo., P., Hammer, C. and Fäh, D. (2021). Correspondence between Site Amplification and Topographical, Geological Parameters: Collation of Data from Swiss and Japanese Stations, and Neural Networks‐Based Prediction of Local Response. Bulletin of the Seismological Society of America 112 (2).  Link doi: 10.1785/0120210225

Michel, C., Fäh, D., Edwards, B., & Cauzzi, C. (2017). Site amplification at the city scale in Basel (Switzerland) from geophysical site characterization and spectral modelling of recorded earthquakes. Physics and Chemistry of the Earth, Parts A/B/C 98, 27-40. doi: 10.1016/j.pce.2016.07.005

Poggi, V., Burjanek, J., Michel, C., & Fäh, D. (2017). Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net. Geophysical Journal International 210(2), 645–659. doi: 10.1093/gji/ggx192

Michel, C., Edwards, B., Poggi, V., Burjanek, J., Roten, D., Cauzzi, C. and Fäh, D. (2014). Assessment of site effects in Alpine regions through systematic site characterization of seismic stations. Bulletin of the Seismological Society of America 104(6), 2809-2826. doi: 10.1785/0120140097

Burjánek, J., Edwards, B. and Fäh, D. (2014). Empirical evidence of local seismic effects at sites with pronounced topography: a systematic approach. Geophysical Journal International 197(1), 608-619. doi: 10.1093/gji/ggu014

Edwards, B., Michel, C., Poggi, V. and Fäh D. (2013). Determination of Site Amplification from Regional Seismicity: Application to the Swiss National Seismic Networks. Seismological Research Letters 84(4), 611-621. doi: 10.1785/0220120176

Hobiger, M., Bergamo, P., Imperatori, W., Panzera, F., Lontsi, M.S., Perron, V., Michel, C., Burjánek, J., Fäh, D. (2021). Site Characterization of Swiss Strong‐Motion Stations: The Benefit of Advanced Processing Algorithms. Bulletin of the Seismological Society of America 111 (4), 1713-1739.  Link doi: 10.1785/0120200316

Panzera, F., Alber, J., Imperatori, W., Bergamo, P., Fäh, D.  (2022). Reconstructing a 3D model from geophysical data for local amplification modelling: The study case of the upper Rhone valley, Switzerland.. Soil Dynamics and Earthquake Engineering 155.  Link doi: 10.1016/j.soildyn.2022.107163

Glueer, F., Häusler, M., Gischig, V., Fäh, D. (2021). Coseismic Stability Assessment of a Damaged Underground Ammunition Storage Chamber Through Ambient Vibration Recordings and Numerical Modelling. Frontiers of Earth Science 9 (1159), 773155.  Link doi: 10.3389/feart.2021.773155

Shynkarenko, A., Lontsi, A.M., Kremer, K., Bergamo, P., Hobiger, M., Hallo, M., Fäh D.  (2021). Investigating the subsurface in a shallow water environment using array and single-station ambient vibration techniques. Geophysical Journal International  227 (3), 1857-1878.  Link doi: 10.1093/gji/ggab314

Lontsi, A.M., Shynkarenko, A., Kremer, K., Hobiger, M., Bergamo, P., Fabbri, S.C., Anselmetti, F.S. and Fäh, D.  (2021). A robust workflow for acquiring and preprocessing ambient vibration data from small aperture ocean bottom seismometer arrays to extract Scholte and Love waves phase-velocity dispersion curves. Pure and Applied Geophysics.  Link doi: 10.1007/s00024-021-02923-8

Häusler, M., Michel, C., Burjánek, J., and Fäh, D.  (2021). Monitoring the Preonzo rock slope instability using resonance mode analysis. J. Geophys. Res. Earth Surf. e2020JF005709.  Link doi: 10.1029/2020JF005709

Hallo, M., Imperatori, W., Panzera, F., Fäh, D.  (2021). Joint multizonal transdimensional Bayesian inversion of surface wave dispersion and ellipticity curves for local near-surface imaging. Geophysical Journal International  226 (1), 627-659. doi: https://doi.org/10.1093/gji/ggab116

Bergamo, P., Hammer, C., and Fäh, D.  (2021). On the Relation between Empirical Amplification and Proxies Measured at Swiss and Japanese Stations: Systematic Regression Analysis and Neural Network Prediction of Amplification. Bulletin of the Seismological Society of America 111 (1), 101-120.  Link doi: 10.1785/0120200228

Chieppa, D., Hobiger, M.& D. Fäh  (2020). Ambient Vibration Analysis on Large Scale Arrays When Lateral Variations Occur in the Subsurface: A Study Case in Switzerland. Pure and Applied Geophysics 177, 4247–4269.  Link doi: 10.1007/s00024-020-02516-x

Chieppa, D., Hobiger, M. & D. Fäh  (2020). Ambient vibration analysis on seismic arrays to investigate the properties of the upper crust: an example from Herdern in Switzerland. Geophysical Journal International ggaa182. doi: 10.1093/gji/ggaa182

Häusler, M Michel, C. Burjanek, J. & D. Fäh  (2019). Fracture Network Imaging on Rock Slope Instabilities Using Resonance Mode Analysis. Geophysical Research Letters Volume 46, Issue 12, 6497-6506. doi: 10.1029/2019GL083201

Kleinbrod, U., Burjanek, J., Fäh, D (2019). Ambient vibration classification of unstable rock slopes: A systematic approach. Engineering Geology Volume 249, 198-217. 

Maranò, S., Hobiger, M., Bergamo, P. & D. Fäh (2017). Analysis of Rayleigh waves with circular wavefront: a maximum likelihood approach. Geophysical Journal International 210, 3, 1570–1580. doi: https://doi.org/10.1093/gji/ggx225

Burjánek, J., Gischig, V., Moore, J.R. and Fäh, D. (2018). Ambient vibration characterization and monitoring of a rock slope close to collapse. Geophys. J. Int. 212, 297–310.  Link doi: 10.1093/gji/ggx424

Maranò, S., Hobiger, M. & D. Fäh (2017). Retrieval of Rayleigh Wave Ellipticity from Ambient Vibration Recordings. Geophys. J. Int..  Link doi: 10.1093/gji/ggx014

Kleinbrod, U., Burjánek, J., Fäh, D. (2017). On the seismic response of instable rock slopes based on ambient vibration recordings. Earth. Planets and Space 69: 126. doi: 10.1186/s40623-017-0712-5

Kleinbrod, U., Huggentobler, M., Burjánek, J., Aman, F., Fäh, D. (2017). A comparative study on seismic response of two unstable rock slopes within same tectonic setting but different activity level. Geophys. J. Int. 211, 3, 1428-1448.  Link doi: 10.1093/gji/ggx376

Panzera, F., Bergamo, P. & Fäh, D. (2020). Reference soil condition for intensity prediction equations derived from seismological and geophysical data at seismic stations. Journal of Seismology 25 (1).  Link doi: 10.1007/s10950-020-09962-z

Service Sismologique Suisse
Sonneggstrasse 5
CH-8092 Zurich
Tel. SED secrétariat
+41 44 633 21 79 (pendant les heures de bureau)

Impressum | Avertissement  | ©2024 ETH Zurich