Appuyez sur la touche de tabulation pour activer le mode lecteur d'écran.
  • Page d'accueil
  • Langue
  • Menu
  • Recherche
  • Langue facile à lire
  • Contenu
  • Contact
MENU
Logo Service Sismologique Suisse ETH logo
DE EN FR IT
Langue facile à lire
DE EN FR IT
×
  • Page d'accueil
  • Séismes
    • Suisse
    • Europe
    • Monde
    • Cartes
    • Signaler un séisme
    • Que faire?
      • Recommandations de comportement
      • Séisme à l’étranger
      • Construction parasismique
      • Assurance tremblements de terre
    • Bien informé en continu
      • Alertes
      • Recevoir des informations
      • Évaluations rapides des dégâts
      • ShakeMap
      • Annonces de tremblements de terre
  • Surveillance
    • Mesurer les tremblements de terre
    • Réseau national suisse
    • Réseaux spéciaux
      • Vue d'ensemble
      • Géothermie Haute-Sorne
      • Géothermie Yverdon-les-Bains
      • Géothermie bassin genevois
      • Géothermie Vinzel
      • Dépôt en profondeur Nord-est de la Suisse
      • Surveillance du forage profond Bâle-1
      • Projets antérieurs
    • Sismogrammes en temps réel
      • Fenêtre de 5 minutes
      • Fenêtre de 20 minutes
      • Fenêtre de 2 heures
      • Fenêtre de 24 heures
    • Réalisation d'une station de mesure
    • Surveillance du traité d'interdiction des essais nucléaires
  • La Suisse des tremblements de terre
    • Vue d'ensemble
    • Aléa
      • Aperçu
      • Composants
      • Modèle de l’aléa sismique
    • Risque
      • Aperçu
      • Composants
      • Modèle de risque sismique
      • Outil risque sismique
    • Scénarios sismiques
    • Régions sismiques
      • Grisons
      • Valais
      • Bâle
    • Tremblements de terre historiques
      • Les dix les plus puissants
      • Bâle 1356
      • Sierre 1946
    • Essaims de séismes
      • Introduction
      • Sarnen 1964
      • Diemtigen 2014 - 2015
  • Savoir
    • Causes des séismes
      • En général
      • En Suisse
      • En Europe
      • Tremblements de terre induits
    • Effets des séismes
    • Prévision sismiques
    • Données sismiques et portails web
      • Aperçu
      • Logiciels pour la surveillance des tremblements de terre
      • Informations sur les stations
      • Catalogues sismiques
      • Formes d’ondes
      • FDSN web services
      • Alerte précoce de tremblement de terre
      • ShakeMap
      • Logiciels anciens
    • Géothermie & séismes
      • Géothermie en bref
      • Formes de la géothermie
      • La géothermie & les séismes induits
      • Mesures d’endiguement de la sismicité induite
      • La géothermie en Suisse
      • La géothermie et le SED
      • Conseil sismologique compétent (GEOBEST2020+)
      • Fracturation hydraulique
    • Tremblement de Mars
    • Questions fréquemment posées (FAQ)
  • Recherche & enseignement
    • Projets
    • Publications
    • Enseignement & formation
    • Schatzalp Workshop 2025
  • Actualités & services
    • Articles d'actualité
      • 2025
      • 2024
      • Archive
    • Pour les écoles
    • Brochures d'information
    • Quiz
    • Vidéos & jeux
    • Simulateur de séismes
    • Bibliographie
  • Qui nous sommes
    • Contact & demandes de médias
    • Portrait
      • Tâches & organisation
      • Histoire
      • Indépendance & transparence
    • Sections
    • Tous les collaborateurs
    • Carrière
    • Coopérations
    • Intranet
Le contenu de la page commence ici

GEOTHERM-2

  • Aperçu
  • Publications
Image du projet

GEOTHERM-2 conducts cross-disciplinary research towards the development of Enhanced Geothermal Systems (EGS). EGS is a technology that will allow the heat resources residing at several kilometers depths to be exploited for electricity and heat production. At present, EGS technology is not mature; two of the key challenges are the difficulty of (1) engineering a lasting heat exchanger with appropriate properties within deep, hot, low-porosity rocks, and (2) the risk of inducing felt and potentially hazardous seismic events during the development and operation of the heat exchanger.

GEOTHERM-2 continues the work initiate in the GEOTHERM-1 project (2009-2012). The project was conceived in order to provide a bridge to a major nationwide project in geothermal energy, the Swiss Competence Center Energy Research-Supply of Energy (SCCER-SoE), that was in its planning phase when GEOTHERM-2 was proposed, and has begun in the meantime.

In total thirty eight co-workers from various Departments and Institutes in ETH and in EPFL, and of the Paul Scherrer Institute contribute to the project.

The main strength of GEOTHERM-2 is to adopt a cross-disciplinary approach to the challenges mentioned above. The contributions of GEOTHERM-2 in terms of scientific results, capacity building and knowledge transfer are a therefore critical intermediate step towards successful future Pilot and Demonstration projects, and complement the activities conducted in SCCER-SoE.

The research activities in GEOTHERM-2 are organized in six Modules or work packages, which are designed to:

  • Develop and test novel observational tools for the geomechanics of reservoir creation;
  • Assess and mitigate the risks associated with noticeable induced seismicity;
  • Assess potential accidental risks leading to health and environmental impacts as well as public perceptions of risks associated with geothermal energy development;
  • Expand a multi-scale – multi-process modeling code for simulating the process of reservoir generation as well as the longer-term evolution of the reservoir during production;
  • Investigate the effects of chemical reaction between fluid and rock on long-term permeability evolution and heat extraction from the reservoir;
  • Design a decision-support tool for optimizing the use of geothermal energy in cities, by quantifying all interacting factors including geological and economic parameters, conversion efficiency and temporal heat storage, complementary energy sources and societal acceptance.
Chef de projet au SED

Prof. Dr. Stefan Wiemer

Membres du projet au SED

Prof. Dr. Stefan Wiemer, Dr. Alba Zappone, Dr. Laurentiu Danciu, Dr. Pierre Dublanchet, Dr. Valentin Gischig, Dr. Dimitrios Karvounis, Eszter Király, Dr. Toni Kraft, Lukas Heiniger, Marcus Herrmann, Dr. Anne Obermann, Dr. Arnaud Mignan, Barbara Schechinger

Source de financement

Competence Center Environment Sustainability (CCES), Competence Center Energy and Mobility (CCEM) and Bundesamt Für Energie (BFE)

Durée

2013 - 2016

Mots-clef

Energy, geothermy, multidisciplinary

Domaine de recherche

Induced Seismicity, Geomechanics, Geochemistry, energy conversion systems, Social Acceptance

Website http://www.sccer-soe.ch/research/geo-energy/task1.2/geotherm-2/

Deichmann N., Kraft T. and Evans K.F.  (2014). Identification of faults activated during the stimulation of the Basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events. Geothermics 52, 84-97. doi: 10.1016/j.geothermics.2014.04.001

Driesner, T. (2013). The Molecular-Scale Fundament of Geothermal Fluid Thermodynamics. Reviews in Mineralogy and Geochemistry 76, 5-33. doi: 10.2138/rmg.2013.76.2

Gischig, V., and Wiemer, S. (2013). A stochastic model for induced seismicity based on non-linearpressure diffusion and irreversible permeability enhancement. Geophys. J. Int.. doi: 10.1093/gji/ggt164

Hillers, G., Husen, S., Obermann, A., Planès, T., Campillo, M. and Larose, E. (2015). Noise based monitoring and imaging resolve reservoir dynamics associated with the 2006 Basel injection experiment. Geophysics 80(4), 51-68. doi: 10.1190/GEO2014-0455.1

Hingerl, F.F., Kosakowski, G., Wagner, T., Kulik, D.A. and Driesner, T. (2014). GEMSFIT: a generic fitting tool for geochemical activity models. Computational Geosciences 18(2), 227-242. doi: 10.1007/s10596-014-9405-3

Hingerl, F.F., Wagner, T., Kulik, D.A., Thomsen ,K. and Driesner, T. (2014). A new aqueous activity model for geothermal brines in the system Na-K-Ca-Mg-H-Cl-SO4-H2O from 25 to 300°C. Chem. Geol.  381, 78-93. doi: 10.1016/j.chemgeo.2014.05.007

Hirschberg, S., Wiemer, S. and Burgherr, P. (2015). Energy from the earth: Deep geothermal as a resource for the future?. TA-Swiss, Bern, Switzerland, 220-251. 

Kaiser, P.K., Valley, B., Dusseault, M.B. and Duff, D. (2013). Hydraulic Fracturing Mine Back Trials – Design Rational and Project status. In: Bunger, A.P., McLennan, J. and Jeffrey, R. : Effective and sustainable hydraulic fracturing. InTech. doi: 10.5772/56260

Kraft, T. and Deichmann, N. (2014). High precision relocation and focal mechanism of the injection induces seismicity at the Basel EGS. Geothermics 52, 59-73. doi: 10.1016/j.geothermics.2014.05.014

Obermann, A., Kraft, T., Larose, E. and Wiemer, S. (2015). Potential of ambient seismic noise techniques to monitor reservoir dynamics at the St. Gallen geothermal site (Switzerland). JGR. doi: 10.1002/2014JB011817

Preisig, G., Eberhardt, E., Gischig, V., Roche, V., van der Baan, M., Valley, B., Kaiser, P.K., Duff, D. and Lowther, R. (2015). Development of connected permeability in massive crystalline rocks through hydraulic fracture propagation and shearing accompanying fluid injection. Geofluids 15, 321-337. doi: 10.1111/gfl.12097

Rivera, J.A., Blum, P. and Bayer, P.  (2015). Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers. Applied Energy 146, 421-433. doi: 10.1016/j.apenergy.2015.02.035

Spada, M., Sutra, E., Wolf, S. and Burgherr, P.  (2014). Accident Risk Assessment for Deep Geothermal Energy Systems. In: Nowakowski, T., Mlynczak, M., Jodejko-Pietruczuk, A. and Werbinska-Woiciechowska, S.: Safety and Reliability: Methodology and Applications. Taylor and Francis Group, London UK. 

Stauffacher, M., Muggli, N., Scolobig, A. and Moser, C. (2015). Framing deep geothermal energy in mass media: the case of Switzerland. Technological Forecasting and Social Change 98, 60–70. doi: 10.1016/j.techfore.2015.05.018

Weis, P., Driesner, T., Coumou, D. and Geiger, S. (2014). Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids 14(3), 347-371. doi: 10.1111/gfl.12080

Zezin, D., Driesner, T. and Sanchez-Valle, C.  (2015). Volumetric Properties of Na2SO4–H2O and Na2SO4–NaCl–H2O Solutions to 523.15 K, 70 MPa. J. Chem. Eng. Data 60(4), 1181–1192. doi: 10.1021/je501152a

Zezin, D., Driesner, T. and Sanchez-Valle, C.  (2014). Volumetric Properties of Mixed Electrolyte Aqueous Solutions at Elevated Temperatures and Pressures. The System KCl–NaCl–H2O to 523.15 K, 40 MPa, and Ionic Strength from (0.1 to 5.8) mol·kg–1. Journal of Chemical and Engineering Data 59, 736-749. doi: 10.1021/je400761c

Service Sismologique Suisse
Sonneggstrasse 5
CH-8092 Zurich
Tel. SED secrétariat
+41 44 633 21 79 (pendant les heures de bureau)

Impressum | Avertissement  | ©2024 ETH Zurich