MENU
The page content begins here

Swiss Seismological Service (SED)

The Swiss Seismological Service (SED) at ETH Zurich is the federal agency for earthquakes. Its activities are integrated in the federal action plan for earthquake mitigation.

Latest Earthquakes Switzerland

Felt Earthquakes in Switzerland

Local Time
Mag.
Location
Felt?
2021-10-18 20:15 2.5 Elm GL Probably not felt
2021-10-12 01:18 3.0 Milano I Probably not felt
2021-10-05 07:39 4.1 Arolla VS Widely felt
2021-10-04 06:09 3.0 Arolla VS Slightly felt
2021-10-03 17:42 2.7 Santa Maria GR Probably not felt
2021-10-02 20:49 2.9 Colmar F Probably not felt
2021-09-29 16:20 3.6 5 km NE Valdobbiadene (TV) Probably not felt
2021-09-28 21:05 2.9 Lago di Garda I Probably not felt
2021-09-28 02:46 3.7 4 km W Miane (TV) Probably not felt
2021-09-28 02:45 3.6 5 km W Miane (TV) Probably not felt

Latest Earthquakes

Local Time
Magnitude
Location
2021-10-24 13:11 1.7 Davos GR
2021-10-24 04:41 1.7 St-Ursanne JU
2021-10-24 01:04 2.0 Sierre VS
2021-10-23 19:55 1.7 Grindelwald BE

Swiss Earthquakes Counter

since 01.01.2021 
000

Earthquake Map of Europe, last 90 days, Mag. 4.5+

Recent earthquakes magnitude 4.5 or greater

Time (UTC)
Mag.
Region
2021-10-21 09:38:39 4.6 Crete, Greece
2021-10-20 04:45:48 4.7 CAUCASUS REGION, RUSSIA
2021-10-19 05:32:33 5.9 EASTERN MEDITERRANEAN SEA
2021-10-17 20:37:02 4.7 Greenland Sea
2021-10-17 20:13:30 4.7 Albania
2021-10-13 18:22:56 4.5 SOUTHERN GREECE
2021-10-12 09:24:02 6.3 CRETE, GREECE
2021-10-09 06:05:32 4.9 Western Iran
2021-10-08 23:16:30 5.1 WESTERN IRAN
2021-10-06 19:57:33 4.9 Northwestern Balkan Peninsula
2021-10-05 07:54:08 4.8 DODECANESE IS.-TURKEY BORDER REG
2021-10-04 02:39:27 5.6 WESTERN IRAN
2021-10-01 02:33:21 4.6 Southern Iran

Earthquake Map of the world, last 90 days, Mag. >= 5.5

Recent earthquakes magnitude 6 or greater

UTC Time
Magnitude
Location
2021-10-24 05:11:34 6.2 Taiwan
2021-10-21 08:10:43 6.0 South of Fiji Islands
2021-10-18 07:26:52 6.1 Vanuatu Islands
2021-10-15 02:44:57 6.4 Bougainville - Solomon Islands region
2021-10-12 09:24:02 6.3 CRETE, GREECE
2021-10-11 09:10:23 6.9 Alaska Peninsula, United States
2021-10-09 10:58:30 6.9 Vanuatu Islands region
2021-10-04 03:54:06 6.3 South Sandwich Islands region
NEWS

2021-10-15

Water feature dances to the rhythm of seismic waves

Once used to supply water, fountains today enliven and brighten both public and private spaces. In 'Waves - Dive in!', the new special exhibition from focusTerra, a fountain powered by 12 spherical jets mirrors the dynamics of seismic waves as an artistic expression of their power. Visitors can even pick the fountain's choreography.

Options include real-time signals from the seismic station on the Zürichberg and the focusTerra exhibition, as well as signals from Mars provided by NASA's InSight mission, the 4.6-magnitude earthquake occurring near Linthal in the canton of Glarus in 2017, and the major earthquake that hit Tohoku in Japan in 2011 at a magnitude of 9.1.

An algorithm translates the various seismic signals to determine the shape and size of the water arcs. The jets are arranged in four groups of three and can propel the water to heights of over 2.5 metres. One jet in each group produces a spray of water representing either the acceleration, speed or path (displacement) of the recorded ground motion. These three parameters are also fundamental for analysing seismological data. 

A large version of this water feature can be admired at Zurich's Seebad Enge resort, where the Aquaretum fountain also displays real-time signals from the Zürichberg station. The fountain usually shows how the waves of the Atlantic, the Mediterranean or the Baltic Sea are behaving. The seismic station on the Zürichberg continuously records the vibrations of the ocean waves and instantly transmits these signals to the fountain's control system. Roughly once a week, the dynamics of the water feature briefly change whenever a major earthquake occurs somewhere in the world whose vibrations shake Zurich's geological underground. With a bit of luck, you might even see smaller-scale Swiss earthquakes on the fountain at Lake Zurich and its little sibling at the focusTerra exhibition.

focusTerra's special exhibition 'Waves - Dive in!' will run until 5 March 2023.

More information is available here.

2021-10-05

[Available in DE / FR] Erdbeben bei Arolla (VS)

Am Dienstag, 5. Oktober 2021, ereignete sich um 07:39 Uhr (Ortszeit) ein Erdbeben mit einer Magnitude von 4.1 in der Nähe von Arolla (VS). Der Erdbebenherd lag etwa 2 km unter Meeresniveau unterhalb des Mont Collon. Bei einem flachen Beben dieser Stärke sind kleinere Schäden nahe dem Epizentrum vereinzelt möglich, allerdings ist die Region nicht besiedelt und uns sind bislang keine Schäden berichtet worden. Es gab jedoch mehr als 60 Verspürtmeldungen, darunter ein Grossteil in Zermatt (Epizentraldistanz: 19 km) und Sion (Epizentraldistanz: 31 km).

Das letzte, ähnlich grosse Ereignis in der Nähe ereignete sich im März 1996 (ebenfalls Magnitude 4.1). Nach einer relativ ruhigen Phase ohne signifikante Erdbeben in den folgenden fast 25 Jahren gab es im September 2020 ein Beben mit einer Magnitude 3.5 und gestern Morgen eines mit einer Magnitude 3.0. Eine erste Analyse deutet darauf hin, dass das Beben Resultat einer in etwa Nord-Süd ausgerichteten schrägen Aufschiebung ist, wie auch schon das Magnitude 3.5 Beben in 2020.

Grundsätzlich sind Erdbeben in dieser Region nichts ungewöhnliches, der Kanton Wallis weist innerhalb der Schweiz die grösste Erdbebengefährdung auf. Es ist zu erwarten, dass in den nächsten Tagen und Wochen kleinere Nachbeben auftreten werden, die möglicherweise auch gespürt werden können. Die Wahrscheinlichkeit, dass in den nächsten Tagen oder Wochen noch ein ähnlich grosses oder grösseres Beben auftritt ist sehr gering, es ist allerdings auch nicht auszuschliessen.

2021-09-15

Fieldwork in Iceland for geothermal energy

Ten researchers from the Swiss Seismological Service (SED) at ETH Zurich went to Iceland in June and August 2021 to support two projects with a seismic measurement campaign. In a collaborative effort with the German Research Centre for Geoscience (GFZ) and Reykjavik Energy (ON Power), the team set up a network of 500 seismic nodes across the Hengill geothermal field. It is the largest and densest network of measuring stations installed in the country so far. 

This fieldwork in Iceland was part of a seismic measurement campaign for a geothermal project in Iceland and "DEEPEN" (DErisking Exploration for geothermal Plays in magmatic ENvironments), a European research project in the field of geothermal energy. DEEPEN aims at establishing an approach to minimise the risk of field exploration in deep geothermal energy and at contributing to a higher probability of success when drilling for geothermal fluids in magmatic systems.

The seismic nodes that were used are 5Hz geophones with integrated battery and digitiser (SOLOS provided by the University of Geneva) and 5Hz geophones with external digitiser and batteries (provided by the Geophysical Instrument Pool of the GFZ). Data from such dense seismic node deployments allow the researchers to gain a better understanding of the sub-surface. Thanks to the small size of the nodes, the research team finished the deployment within two weeks in June, despite the tough weather condition, steep terrain and long hikes to reach each dedicated site.

With the network, a special focus was given to the Northern region around Nesjavellir and the Southern Hverahlid, where the most productive boreholes of the geothermal field are located. A vehicle called vibrotruck (see fig. 2) passed through the Northern array and provided an additional source signal during the deployment time. Typically used in seismic exploration, the vibrotruck pressed a vibrating plate onto the earth’s surface. The low-frequency vibrations propagate underground and are reflected by the rock strata. These seismic waves were recorded by the installed geophones and gave further insights into the geological sub-surface.

After the deployment, the network was running successfully for two months and overlapped with another seismic network (COSEISMIQ), which is also operated by the SED. In August 2021, the research group travelled again to Iceland to dismantle both networks. The researchers expect that the high-density seismic imaging will allow them to illuminate the sub-surface in unprecedented detail.

2021-08-05

A better understanding of slow slips offers insights into earthquakes

Earthquakes are caused by the sudden release of stress along faults in the Earth's crust. The resulting seismic waves of this fast ruptures of the Earth crust propagate through the ground, causing the shaking we perceive as earthquakes. But there are also more gentle processes, non-shaky versions of seismic fractures. These so-called "slow slips" attracted the attention of a research team from the Swiss Seismological Service at ETH Zürich, the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, the University of Geneva in Switzerland, the German Research Centre for Geoscience (GFZ) and the University of Bologna in Italy.

Slow slip events are fractures of the Earth's crust that propagate very slowly without generating considerable ground shaking. This fracture process can last from less than a day to more than a year. Yet, slow slips have the potential of triggering earthquakes or earthquakes swarms – a process that is not fully understood so far.

Slow slips are most common in regions where tectonic plates slide over each other (in subduction zones), especially all around the edge of the Pacific Ocean, including Japan, New Zealand, North and Central America or near volcanoes such as Mt. Etna in Italy or Kilauea in Hawaii.

The team analysed the correlation between the characteristics of each slow event and the triggered seismic activity. The results show that shallower slow slips are more likely to generate larger seismicity compared to deeper slow slip processes. This information can now be used to improve a model to predict the changes and hazards associated with these specific types of events. The researchers hope that the database and modelling can be developed further to build a better understanding of those complex processes.

The research was recently published in the scientific journal “Science Advances” and is accessible under the following link: https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.abg9718

TOPICS

Earthquake

Help, the Earth Is Shaking!

Help, the Earth Is Shaking!

Earthquakes are inevitable, but the damage they may be expected to cause can be mitigated in relatively simple ways. Find out the recommended behaviour before, during and after a powerful earthquake.

Learn more

Knowledge

Earthquake Country Switzerland

Earthquake Country Switzerland

Switzerland experiences between 1'000 and 1'500 earthquakes a year. Swiss citizens actually feel somewhere between 10 and 20 quakes a year, usually those with a magnitude of 2.5 or above. Based on the long-term average, 23 quakes with a magnitude of 2.5 or above occur every year. Find out more about the natural hazards with the greatest damage-causing potential in Switzerland.

Learn more

Alerting

Always Informed

Always Informed

If you want to be kept informed at all times, here you will find an overview of the various information services provided by the Swiss Seismological Service (SED).

Learn more

Knowledge

Earthquake Hazard

Earthquake Hazard

In Switzerland, earthquakes are the natural hazard with the greatest potential for causing damage. They cannot currently be prevented or reliably predicted. But, thanks to extensive research, much is now known about how often and how intensely the earth could shake at a given location in the future. Consult a variety of different maps using our interactive web tool to find out how likely certain earthquakes are in Switzerland.

Learn more

Research & Teaching

Fields of Research

Fields of Research

We are often asked what staff at the SED do when no earthquakes are occurring. The answer is they conduct research in a variety of fields, constituting SED's main scientific activities described in our research field section.

Learn more

 

About Us

Swiss Seismological Service (SED)

Swiss Seismological Service (SED)

The Swiss Seismological Service (SED) at ETH Zurich is the federal agency responsible for monitoring earthquakes in Switzerland and its neighboring countries and for assessing Switzerland’s seismic hazard. When an earthquake happens, the SED informs the public, authorities, and the media about the earthquake’s location, magnitude, and possible consequences. The activities of the SED are integrated in the federal action plan for earthquake mitigation.

Learn more

Earthquakes

Earthquake Monitoring

Earthquake Monitoring

Around 10 to 20 times a year you will hear or read about an earthquake occurring in Switzerland. However, the vast majority of quakes recorded by the SED go unnoticed by the general public because they fall below the threshold of human perception and can only be detected by sensitive measuring devices. The Swiss Seismological Service (SED) operates a network of more than 200 seismic stations across Switzerland.

Learn more

Research and Teaching

Products and Software

Products and Software

Go to our Products page for access to seismic data and various apps.

Learn more