The Swiss Seismological Service (SED) at ETH Zurich is the federal agency for earthquakes. Its activities are integrated in the federal action plan for earthquake mitigation.
Did you feel an earthquake? Report an earthquake
Help, the earth is shaking! What to do in case of an incident?
Local Time |
Mag. |
Location |
Felt? |
---|---|---|---|
2021-03-21 18:37 | 3.7 | Albstadt D | Slightly felt |
2021-03-15 14:27 | 3.2 | Bern | Widely felt |
Local Time |
Magnitude |
Location |
---|---|---|
2021-04-13 06:18 | 0.9 | Muellheim D |
2021-04-13 03:50 | 2.0 | Domodossola I |
2021-04-12 02:15 | 0.7 | Porrentruy JU |
2021-04-10 01:50 | 1.6 | Sion VS |
Time (UTC) |
Mag. |
Region |
---|---|---|
2021-04-13 20:28:04 | 5.1 | DODECANESE IS.-TURKEY BORDER REG |
2021-04-10 22:53:58 | 4.5 | GREECE |
2021-04-08 00:33:47 | 4.5 | DODECANESE IS.-TURKEY BORDER REG |
2021-04-06 15:12:25 | 5.3 | IRAN-IRAQ BORDER REGION |
2021-04-06 08:54:21 | 4.6 | Northwestern Balkan Peninsula |
2021-04-03 06:10:14 | 4.8 | Central Mediterranean Sea |
2021-04-01 14:33:33 | 4.8 | Northern Algeria |
2021-04-01 12:33:40 | 4.7 | Dodecanese Islands, Greece |
2021-04-01 12:33:18 | 4.7 | EASTERN MEDITERRANEAN SEA |
2021-03-30 16:25:01 | 4.7 | Austria |
2021-03-30 07:35:47 | 4.5 | ADRIATIC SEA |
2021-03-27 13:47:55 | 5.4 | ADRIATIC SEA |
2021-03-27 13:47:51 | 5.6 | Adriatico Centrale (MARE) |
UTC Time |
Magnitude |
Location |
---|---|---|
2021-04-10 11:38:32 | 6.0 | Near north coast of New Guinea, Papua New Guinea |
2021-04-10 09:30:44 | 6.1 | Celebes Sea |
2021-04-10 07:00:17 | 6.0 | Jawa, Indonesia |
2021-04-07 09:53:28 | 6.0 | Kermadec Islands region |
2021-04-05 07:37:50 | 6.0 | Off east coast of North Island, New Zealand |
2021-04-03 01:16:39 | 6.6 | East of South Sandwich Islands |
2021-04-01 15:11:18 | 6.0 | Fiji Islands region |
2021-04-01 09:56:37 | 6.5 | Kermadec Islands, New Zealand |
2021-04-06
NASA’s InSight mission detected two large marsquakes as summer emerges, the winds calm, and the dust settles. Now, after one Martian year (687 Earth days) the Marsquake Service led by ETH Zurich and operated by the Seismology and Geodynamics group and the Swiss Seismological Service is faster than ever at characterizing seismic activity on the red planet.
After several months of windy weather and dust storms, the atmosphere of Mars is becoming quiet again and the seismometer on the InSight lander started recording significant marsquakes. In early March, two new marsquakes with magnitudes of 3.3 and 3.1 were observed. Within 12 hours of the data arriving on Earth, researchers at the Marsquake Service at ETH Zurich determined the location, magnitude and, in one case, even the focal mechanism. This rapid result demonstrates that the whole chain of data recording, transmission, and analysis set-up by the InSight mission is functioning efficiently and rapidly. These moderately sized events recorded at over 1,200 km distance and by a single station (that would not even be observed by a similar station on Earth), are sufficient to confirm the emerging geological interpretation of the internal structure and surface tectonics of the red planet acquired over the past year on Mars.
Since the beginning of the Mars InSight mission on 26 November 2018, over 500 marsquakes have been recorded. With magnitudes between 1 and 4, these are small events compared to terrestrial earthquakes. Only a few of these marsquakes could be reliably located, determining both the direction and distance from the seismometer. The recently detected, larger marsquakes are located in Cerberus Fossae, a long graben system about 1,200 km from Elysium Planitia, where InSight landed. They have an extensional mechanism consistent with the regional tectonic setting showing that the Martian crust is still undergoing active deformation.
In the InSight mission, data recorded on Mars are relayed back to Earth in regular transmissions, often multiple times a day, via the NASA Deep Space Network. They are promptly compiled and controlled for quality by the Jet-Propulsion Laboratory (JPL) in the U.S. and the National Centre for Space Studies (CNES) in France, and delivered to the Marsquake Service located at ETH Zurich in Switzerland. The Marsquake Service is responsible for the first analysis of the Mars data, with the goal of identifying marsquakes and releasing periodic marsquake catalogues – the starting point for further scientific investigations. This is a collaborative ground service operation that includes on-duty seismologists from ETH Zurich, Institut de physique du globe de Paris (IPGP), University of Bristol, and Imperial College London. At the start of the mission, the data recorded on Mars was full of surprises and difficult to decipher. After a full year of processing seismic data from Mars, the Marsquake Service is now able to fully characterise the signals within just a few hours after having been recorded on Mars. This performance is comparable to that achieved by modern seismic networks on the Earth.
Recognizing the successful performance of InSight, NASA has approved the extension of the mission for a second Martian year. Unfortunately, the red dust which characterises all the pictures of Mars is also accumulating on InSight’s solar panels, reducing the panel’s power production and raising concerns about the long-term operation of the mission.
To learn more about the NASA InSight mission visit www.insight.ethz.ch or https://mars.nasa.gov/insight/
2021-03-19
One of the most common ways to characterise an earthquake is by its magnitude, which quantifies the energy released during an earthquake, i.e. its strength. The larger the earthquake's magnitude, the more likely it becomes to feel the shaking. There are different types of magnitudes: for example, the local magnitude (ML, the Richter scale, for earthquakes recorded close-by), the body wave magnitude (mb, for earthquakes at large distances), the surface wave magnitude (MS, also for large distances) or the moment magnitude (Mw, for all earthquakes types). These different scales have been developed and modified over the last century, reflecting mainly our improving capability to monitor earthquakes of different sizes and at different distances. Common to all magnitude types is the fact that they can be calculated directly from the earthquake signals recorded by seismic stations. In order to better characterise earthquakes in Switzerland, the Swiss Seismological Service at the ETH Zurich (SED) has recently introduced a revised local magnitude (MLhc).
MLhc makes the routine computation of local magnitudes in Switzerland entirely consistent with the state-of-the-art of engineering seismology research at the SED, and allows optimal use of the high-density Swiss National Seismic Network. What does this mean exactly, and how does MLhc differ from the previous local magnitude we used?
Earthquakes are commonly characterised using the local magnitude (ML), originally introduced by Charles Richter in California in 1935. ML is often found to be region dependent. In 1984, Urs Kradolfer, a former scientist at SED, calibrated ML for Swiss earthquakes. His calculations were based on the recordings of the Swiss National Seismic Network, which comprised 23 stations at that time that recorded vertical ground motions only. At the turn of the century, Kradolfer’s model was later amended to take advantage of the next generation of 3-component digital broadband instruments in the upgraded Swiss National Seismic, in particular by using horizontal ground motion records (MLh).
In the last 20 years, the Swiss National Seismic network has grown significantly and now comprises more than 200 seismic stations, including over 100 high-quality strong-motion sensors. The SED is now routinely recording earthquakes at very close distances (15 to 20 km) to their focus in the ground (hypocenter), often with MLh much smaller than 2. Such close distances and small magnitudes are outside the calibration range of Kradolfer’s model. Another limitation of MLh is that station correction factors due to local soil conditions were not systematically used. However, this is crucial, particularly at strong-motion sites mostly installed in urban areas and often characterised by significant amplification of ground motions. When using MLh, seismologists had to reject station magnitudes from sites too close to the earthquake or with strong site amplifications. To cope with these drawbacks, the SED recently migrated to a revised local magnitude: "MLhc". The “c” stands for "corrected".
In summary, by design MLhc has been calibrated to provide magnitudes that are as similar as possible to MLh, yet with two considerable improvements that allow seismologists to use all stations collected in the network and provide more stable magnitudes, especially for small earthquakes:
While for a simpler communication, the SED only uses the term "magnitude", the detailed information provided on the SED website always specify the earthquake magnitude type.
More information on the different magnitude types can be found here.
2021-03-15
Am Montag, dem 15. März 2021 hat sich um 14:27 Uhr (Lokalzeit) südlich von Bern in einer geringen Tiefe von rund 5 km ein Erdbeben der Magnitude 3.2 ereignet.
Die Erschütterungen waren vorwiegend im Grossraum Bern gut zu spüren. In der ersten Stunde nach dem Beben sind beim Erdbebendienst bereits mehrere Hundert Meldungen aus der Bevölkerung eingegangen. Bei einem Erdbeben dieser Stärke sind keine Schäden zu erwarten.
Am 3. Februar 2021 ereignete sich ungefähr 10 km nördlich des aktuellen Ereignisses ein kleineres Beben mit Magnitude 2.8, das in einem ähnlichen Gebiet verspürt wurde. Auch in der näheren Umgebung zum Erdbeben vom 15. März 2021 wurden bereits kleinere Erdbeben registriert, ein spürbares zuletzt am 6. Juni 2015 mit Magnitude 2.6. Zudem wird derzeit ein möglicher Zusammenhang mit einer Nord-Süd verlaufenden Struktur von Erdbeben südlich von Bern analysiert.
2021-02-07
Am Sonntag, dem 7. Februar 2021, ereignete sich um 10:37 Uhr (Ortszeit) nördlich von Cornaux in sehr geringer Tiefe ein Erdbeben der Stärke 2.9.
Die Erschütterungen waren in einem Radius von 5 km um das Epizentrum gut zu spüren, insbesondere in Cornaux, Cressier und Marin-Epagnier. Die sehr geringe Tiefe des Ereignisses erklärt, warum es in der Umgebung deutlich zu spüren war, aber keine Meldungen aus einer Entfernung von mehr als 6 km beim Schweizerischen Erdbebendienst an der ETH Zürich eingegangen sind. Bei einem Erdbeben dieser Stärke sind keine Schäden zu erwarten.
Das letzte von der Bevölkerung in dieser Region verspürte Erdbeben ereignete sich am 3. Februar 2003, sein Epizentrum lag 3 km südwestlich des heutigen Bebens.
Knowledge
Switzerland experiences between 1'000 and 1'500 earthquakes a year. Swiss citizens actually feel somewhere between 10 and 20 quakes a year, usually those with a magnitude of 2.5 or above. Based on the long-term average, 23 quakes with a magnitude of 2.5 or above occur every year. Find out more about the natural hazards with the greatest damage-causing potential in Switzerland.
Knowledge
In Switzerland, earthquakes are the natural hazard with the greatest potential for causing damage. They cannot currently be prevented or reliably predicted. But, thanks to extensive research, much is now known about how often and how intensely the earth could shake at a given location in the future. Consult a variety of different maps using our interactive web tool to find out how likely certain earthquakes are in Switzerland.
About Us
The Swiss Seismological Service (SED) at ETH Zurich is the federal agency responsible for monitoring earthquakes in Switzerland and its neighboring countries and for assessing Switzerland’s seismic hazard. When an earthquake happens, the SED informs the public, authorities, and the media about the earthquake’s location, magnitude, and possible consequences. The activities of the SED are integrated in the federal action plan for earthquake mitigation.
Earthquakes
Around 10 to 20 times a year you will hear or read about an earthquake occurring in Switzerland. However, the vast majority of quakes recorded by the SED go unnoticed by the general public because they fall below the threshold of human perception and can only be detected by sensitive measuring devices. The Swiss Seismological Service (SED) operates a network of more than 200 seismic stations across Switzerland.