Premere il tasto Tab per attivare la modalità screen reader.
  • Pagina iniziale
  • Lingua
  • Menu
  • Cerca
  • Lingua facile
  • Contenuto
  • Contatto
MENU
Logo Servizio Sismico Svizzero ETH logo
DE EN FR IT
Lingua facile
DE EN FR IT
×
  • Pagina iniziale
  • Terremoti
    • Svizzera
    • Europa
    • Mondo
    • Mappe
    • Segnalate un terremoto
    • Cosa fare?
      • Raccomandazioni di comportamento
      • Terremoto all’estero
      • Edilizia antisismica
      • Assicurazione antisismica
    • Sempre informati
      • Allerta
      • Ricevere informazioni
      • Stime rapide dei danni
      • ShakeMap
      • Annunci di terremoto
  • Sorveglianza
    • Misurare i terremoti
    • Rete nazionale svizzera
    • Speciali reti
      • Panoramica
      • Geotermia Haute-Sorne
      • Geotermia Yverdon-les-Bains
      • Geotermia bacino di Ginevra
      • Geotermia Vinzel
      • Depositi profondi Svizzera nordorientale
      • Monitoraggio del foro di trivellazione Basilea-1
      • Progetti passati
    • Sismogrammi in tempo reale
      • Ultimi 5 minuti
      • Ultimi 20 minuti
      • Ultime 2 ore
      • Ultime 24 ore
    • Realizzazione di una stazione di registrazione
    • Monitoraggio del Trattato sul divieto degli esperimenti nucleari
  • Svizzera terra di sismi
    • Panoramica
    • Pericolosità
      • Panoramica
      • Componenti
      • Modello di pericolosità sismica
    • Rischio
      • Panoramica
      • Componenti
      • Modello di rischio sismico
      • Strumento di rilevamento del rischio sismico
    • Scenari sismici
    • Regioni sismiche
      • Grigioni
      • Vallese
      • Basilea
    • Terremoti storici
      • I dieci più forti
      • Basilea 1356
      • Sierre 1946
    • Sciami sismici
      • Introduzione
      • Sarnen 1964
      • Diemtigen 2014 - 2015
  • Sapere
    • Cause dei terremoti
      • In genere
      • In Svizzera
      • In Europa
      • Sismi indotti
    • Conseguenze dei terremoti
    • Precursori sismici
    • Portali web e dati sui terremoti
      • Panoramica
      • Software per il monitoraggio dei terremoti
      • Informazioni sulle stazioni
      • Cataloghi dei terremoti
      • Dati sulle forme d’onda
      • FDSN web services
      • Allerta precoce sui terremoti
      • ShakeMap
      • Archivio
    • Geotermia & terremoti
      • Geotermia in breve
      • Forme di energia geotermica
      • Geotermia & terremoti indotti
      • Misure per mitigare sismicità indotta
      • Geotermia in Svizzera
      • Geotermia e il SED
      • Competente consulenza sismologica (GEOBEST2020+)
      • Fracking
    • Scosse su Marte
    • Domande più frequenti (FAQ)
  • Ricerca & insegnamento
    • Progetti
    • Pubblicazioni
    • Insegnamento & formazione
    • Schatzalp Workshop 2025
  • Attualità & publicazioni
    • Articoli attuali
      • 2025
      • 2024
      • Archivio
    • Per le scuole
    • Opuscoli informativi
    • Quiz
    • Video e giochi
    • Simulatore sismico
    • Letteratura sui terremoti
  • Chi siamo
    • Contatti & richieste dei media
    • Profilo
      • Compiti & organizzazione
      • Storia
      • Indipendenza & trasparenza
    • Sezioni
    • Tutti i collaboratori
    • Carriera
    • Cooperazioni
    • Intranet
Il contenuto della pagina inizia qui

Seismic monitoring of the rock instability at the former Mitholz ammunition depot

  • Sommario
  • Publications
Immagine del progetto

There is a higher risk of explosion from ammunition ordnance in the former Mitholz ammunition depot than previously assumed. For this reason, it was decided to completely clear the site. The results published in the work by Glueer et al. (2021) show that a possible earthquake-induced rockfall should be taken into account in risk assessments. Large amplifications of seismic waves are observed on the rock mass above the cavern at Mitholz, the origin of which is the strong internal disruption of the rock mass due to the explosions in 1947. The Federal Department of Defence, Civil Protection and Sport (DDPS) and ETH Zurich are therefore conducting a joint seismological research and measurement project. This includes an alarming after an earthquake, the installation of permanent and temporary seismic sensors and the development of a 3D model of the underground.


Alarming after an earthquake is triggered if defined threshold values are exceeded. This is integrated into the standard operation system within SED. Seismic stations are being installed on the rock formation above the caverns in the Mitholz area. These allow the measurement of earthquake amplification and its temporal variability, in particular the investigation of the dependence on water in the fissures and the recording of changes in the behaviour of the local structure during the extraction of rock material at the rock face. During the seismic measurements, the dynamic behaviour of the local structure at the site on the rock face is continuously derived from the ambient vibrations, enabling the detection of possible changes in the behaviour of the rock mass.

 

To optimise the positioning of the permanent seismic stations, ambient vibration measurements are carried out over the entire rock formation above the caverns using dense arrays of seismic sensors. The aim of the measurements is to map the natural frequencies and polarisation of the wave field as a whole. We use the scientific methods developed at the SED, and thus to obtain information about the internal structure of the rock mass, particularly regarding the potential disruption of the material at the rock front and deep fracture structures that delimit the large volumes. These investigations are combined with engineering-geological studies. They lead to the development of a three-dimensional model, which is used for modelling earthquake effects.

Project Leader al SED

Prof. Donat Fäh

Partecipanti del SED

Franziska Glüer, Mauro Häusler, Xavier Borgeat, Valentin Gischig

Finanziamento

Eidgenössische Departement für Verteidigung, Bevölkerungsschutz und Sport (VBS)

Durata

2024-2025

Parole chiavi

Earthquake induced mass movements, unstable rock-slopes, real-time monitoring, seismic methods

Settore di ricerca

Earthquake Hazard and Risk, Geo Risks

Glueer, F., Häusler, M., Gischig, V. and Fäh, D.  (2021). Coseismic Stability Assessment of a Damaged Underground Ammunition Storage Chamber Through Ambient Vibration Recordings and Numerical Modelling. Front. Earth Sci.  https://doi.org/10.3389/feart.2021.773155 

Häusler, M., Glueer, F., & Fäh, D. (2024). The changing seismic site response of the Brienz/Brinzauls rock slope instability: insights from 5 years of monitoring before, during and after a partial collapse in June 2023. ICL open access book series “Progress in Landslide Research and Technology” 2-12. 

Burjanek, J., Kleinbrod, U., & Fäh, D. (2019). Modeling the Seismic Response of Unstable Rock Mass With Deep Compliant Fractures. Journal of Geophysical Research-Solid Earth 124(12), 13039-13059. doi: 10.1029/2019jb018607

Häusler, M., Michel, C., Burjanek, J., & Fäh, D. (2019). Fracture Network Imaging on Rock Slope Instabilities Using Resonance Mode Analysis. Geophysical Research Letters 46(12), 6497-6506. doi: 10.1029/2019gl083201

Häusler, M., Gischig, V., Thöny, R., Glueer, F. and Fäh, D. (2021). Monitoring the changing seismic site response of a fast-moving rockslide (Brienz/Brinzauls, Switzerland). Geophysical Journal International 229 (1), 299-310. doi: 10.1093/gji/ggab473

Kleinbrod, U., Burjanek, J., & Fäh, D. (2019). Ambient vibration classification of unstable rock slopes: A systematic approach. Engineering Geology 249, 198-217. doi: 10.1016/j.enggeo.2018.12.012

Service Sismologique Suisse
Sonneggstrasse 5
CH-8092 Zurich
Tel. SED segreteria
+41 44 633 21 79 (durante l'orario d'ufficio)

Impressum | Note legali  | ©2024 ETH Zurigo