Press tab to activate screen reader mode
  • Home
  • Language
  • Navigation menu
  • Search
  • Plain language
  • Content
  • Contact
MENU
Swiss Seismological Service logo ETH logo
DE EN FR IT
Plain language
DE EN FR IT
×
  • Home
  • Earthquakes
    • Switzerland
    • Europe
    • World
    • Maps
    • Report an earthquake
    • What to do?
      • Behavioural recommendations
      • Earthquakes abroad
      • Earthquake-resistant construction
      • Earthquake insurance
    • Always informed
      • Alerting
      • Receive information
      • Rapid impact assessment
      • ShakeMap
      • Earthquake announcements
  • Monitoring
    • Measuring earthquakes
    • National seismic network
    • Special networks
      • Overview
      • Geothermal energy Haute-Sorne
      • Geothermal energy Yverdon-les-Bains
      • Geothermal energy Geneva Basin
      • Geothermal energy Vinzel
      • Geological repository Northeastern Switzerland
      • Monitoring of the Borehole Basel-1
      • Past projects
    • Realtime seismograms
      • Last 5 minutes
      • Last 20 minutes
      • Last 2 hours
      • Last 24 hours
    • Setup of a monitoring station
    • Nuclear test ban treaty monitoring
  • Earthquake country Switzerland
    • Overview
    • Hazard
      • Overview
      • Components
      • Earthquake hazard model
    • Risk
      • Overview
      • Components
      • Earthquake risk model
      • Earthquake risk tool
    • Earthquake scenarios
    • Earthquake regions
      • Grisons
      • Valais
      • Basel
    • Historical earthquakes
      • The ten strongest
      • Basel 1356
      • Sierre 1946
    • Earthquake swarms
      • Introduction
      • Sarnen 1964
      • Diemtigen 2014 - 2015
  • Knowledge
    • Causes of earthquakes
      • In general
      • In Switzerland
      • In Europe
      • Induced earthquakes
    • Effects of earthquakes
    • Earthquake prediction
    • Earthquake data & web portals
      • Overview
      • Earthquake monitoring software
      • Station information
      • Earthquake catalogues
      • Waveform data
      • FDSN web services
      • Earthquake early warning
      • ShakeMap
      • Software archive
    • Geothermal energy & earthquakes
      • Geothermal energy in brief
      • Forms of geothermal energy
      • Geothermal energy & induced earthquakes
      • Measures to control induced seismicity
      • Geothermal energy in Switzerland
      • Geothermal energy and the SED
      • Seismological consulting (GEOBEST2020+)
      • Fracking
    • Quakes on Mars
    • Frequently asked questions (FAQ)
  • Research & teaching
    • Projects
    • Publications
    • Teaching & training
    • Schatzalp Workshop 2025
  • News & services
    • News articles
      • 2025
      • 2024
      • Archive
    • For schools
    • Brochures
    • Quiz
    • Videos & games
    • Earthquake simulator
    • Earthquake literature
  • About us
    • Contact & media enquires
    • Portrait
      • Tasks & organisation
      • History
      • Independence & transparency
    • Sections
    • All employees
    • Careers
    • Cooperations
    • Intranet
The content of the page starts here

GeoBest

  • Overview
  • Publications
Project image

The processes and conditions underpinning induced seismicity associated with deep geothermal operations are still not sufficiently well understood to make useful predictions as to the likely seismic response to reservoir development and exploitation. The empirical data include only a handful of well-monitored EGS experiments; models are consequently poorly constrained. Unfortunately, datasets of well-monitored deep hydrothermal experiments are missing and empirical constraints of induced seismicity models for these cases do not exist. Given that the majority of the projects underway or planned in Europe are of the hydrothermal type, there is hope that this deficit can be remedied in the near future through a close cooperation of geothermal industry, science and public authorities.

This is where the GeoBest project comes to play. By supporting selected pilot project for a limited time, SED facilitates the dialog with geothermal industry. Besides of the unique opportunity to collect high quality seismic data and being able to access relevant project data, gaining first hand practical experience in this field is of paramour importance for the development of significant best practice guidlines.

Project Leader at SED

Toni Kraft

SED Project Members

INDU group

Funding Source

Bundesamt für Energie

Duration

2011-2015

Keywords

Enhanced Geothermal System (EGS); Induced seismicity; High-precision hypocenter locations; Activated faults

Research Field

Induced Seismicity, Earthquake Statistics, Seismotectonics, Real-time monitoring

Deichmann, N., Kraft, T. and Evans, K.F. (2014). Identification of faults activated during the stimulation of the Basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events. Geothermics 52, 84-97. doi: 10.1016/j.geothermics.2014.04.001

Diehl, T., Kraft, T., Kissling, E., Deichmann, N., Clinton, J. and Wiemer, S. (2014). High-precision relocation of induced seismicity in the geothermal system below St. Gallen (Switzerland). EGU General Assembly Conference Abstracts 16, 12541. 

Edwards, B., Kraft, T., Cauzzi, C., Kastli, P. and Wiemer, S. (2015). Seismic monitoring and analysis of deep geothermal projects in St Gallen and Basel, Switzerland. Geophys. J. Int. 201, 1020-1037. 

Evans, K.F., Zappone, A., Kraft, T., Deichmann, N. and Moia, F.  (2012). A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics 41, 30-54. doi: 10.1016/j.geothermics.2011.08.002

Goertz, A., Riahi, N., Kraft, T. and Lambert, M.  (2012). Modeling Detection Thresholds of Microseismic Monitoring Networks. 2012 SEG Annual Meeting. Society of Exploration Geophysicists. 

Kraft, T., Mignan, A. and Giardini, D. (2013). Optimization of a large-scale microseismic monitoring network in northern Switzerland. Geophysical Journal International 195, 474-490. doi: 10.1093/gji/ggt225

Kraft, T., Wiemer, S., Deichmann, N., Diehl, T., Edwards, B., Guilhem, A., Haslinger, F. et al. (2013). The ML 3.5 earthquake sequence induced by the hydrothermal energy project in St. Gallen, Switzerland. AGU Fall Meeting Abstracts 1, 3. 

Kraft, T. and Deichmann, N.  (2014). High-precision relocation and focal mechanism of the injection-induced seismicity at the Basel EGS. Geothermics 52, 59-73. doi: 10.1016/j.geothermics.2014.05.014

Kraft, T. (2015). A high-resolution ambient seismic noise model for Europe. EGU General Assembly Conference Abstracts 16, 12407. 

Kraft, T. et al. (2015). Lessons learned from the 2013 ML3.5 induced earthquake sequence at the St. Gallen geothermal site. Schatzalp Workshop on Induced Seismicity, Davos, Switzerland. 

Obermann, A., Kraft, T., Larose, E. and Wiemer, S. (2015). Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). J. Geophys. Res. Solid Earth 120(6), 4301–4316. doi: 10.1002/2014JB011817

Plenkers, K., Husen, S. and Kraft, T. (2015). A Multi-Step Assessment Scheme for Seismic Network Site Selection in Densely Populated Areas. Journal of Seismology 19(4), 861-879. 

Swiss Seismological Service
Sonneggstrasse 5
CH-8092 Zurich
Phone SED secretariat
+41 44 633 21 79 (during office hours)

Imprint | Disclaimer  | ©2024 ETH Zurich