MENU
The page content begins here

Swiss Seismological Service (SED)

The Swiss Seismological Service (SED) at ETH Zurich is the federal agency for earthquakes. Its activities are integrated in the federal action plan for earthquake precaution.

Felt Earthquakes in Switzerland

Local Time
Mag.
Location
Felt?
2020-03-18 02:54 2.7 Montreux VD Felt
2020-03-07 03:06 2.4 Santa Maria GR Probably not felt

Latest Earthquakes

Local Time
Magnitude
Location
2020-03-30 09:28 0.9 Sion VS
2020-03-29 14:00 1.3 Savognin GR
2020-03-29 00:31 1.6 Sargans SG
2020-03-28 17:41 0.4 Bourg-Saint-Pierre VS
2020-03-28 04:35 0.9 Sanetschpass VS

Swiss Earthquakes Counter

since 01.01.2020 
000

Recent earthquakes magnitude 4.5 or greater

Time (UTC)
Mag.
Region
2020-03-29 04:34:24 4.5 IONIAN SEA
2020-03-27 10:43:43 4.5 Western Iran
2020-03-26 07:38:30 4.6 Ionian Sea
2020-03-26 07:09:26 5.0 NORTHERN ALGERIA
2020-03-26 05:39:21 4.7 Turkey-Iran border regi
2020-03-25 09:49:43 4.6 Greece-Albania border r
2020-03-22 06:01:20 4.6 Northwestern Balkan Peninsula
2020-03-22 05:24:03 5.4 Northwestern Balkan Peninsula
2020-03-21 00:49:51 5.4 GREECE
2020-03-20 21:38:30 4.6 Greece-Albania border region
2020-03-19 17:53:32 5.0 EASTERN TURKEY
2020-03-17 00:52:56 4.5 SOUTHERN ITALY
2020-03-16 01:53:23 4.6 Dodecanese Islands, Greece

Recent earthquakes magnitude 6 or greater

UTC Time
Magnitude
Location
2020-03-26 15:38:04 6.1 Mindanao, Philippine Islands
2020-03-25 02:49:21 7.5 East of Kuril Islands, Russia
2020-03-22 22:38:04 6.1 Central East Pacific Rise
2020-03-18 17:45:37 6.3 South of Bali, Indonesia
2020-03-18 03:13:46 6.1 Vanuatu Islands
2020-03-17 16:07:26 6.1 North Pacific Ocean
2020-03-17 16:06:22 6.0 Samoa Islands region
2020-03-14 10:01:17 6.3 Kermadec Islands region
NEWS

2020-03-18

[Available in DE] Erdbeben bei Vevey

[Available in DE] Erdbeben bei Vevey

Am Mittwoch, den 18. März 2020, ereignete sich um 02:54 Uhr Ortszeit ein Erdbeben der Magnitude 2.6 rund 10 km östlich von Vevey (VD). Die Tiefe des Bebens lag in ungefähr 9 km.

Das Epizentrum lag in der Gemeinde Montbovon (FR). Zahlreiche Personen in der Region haben das Beben verspürt.

Innerhalb des letzten Jahres gab es in der östlichen Genferseeregion mehrere, meist schwächere Erdbeben. Das stärkste Erdbeben des vergangenen Jahres in dieser Region ereignete sich am 28.05.2019 rund 13 km südwestlich von Vevey mit einer Magnitude von 4.2.

2020-02-24

The seismicity of Mars

The seismicity of Mars

Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active. The recorded data enables a better understanding of the interior of Mars, the primary goal of the InSight mission.

On 26 November 2018, the NASA InSight lander successfully set down on Mars in the Elysium Planitia region. Seventy Martian days later, the mission’s seismometer SEIS began recording the planet’s vibrations. A team of researchers and engineers at ETH Zurich, led by ETH Professor Domenico Giardini, had delivered the SEIS control electronics and is responsible for the Marsquake Service. With the first data coming in, the Marsquake Service, operated by researchers of the Swiss Seismological Service in collaboration with the seismology and geodynamics group at ETH Zurich and international colleagues, commenced full operation. On a daily basis, incoming data is analyzed and interpreted. However, only a fraction of the data is automatically sent to Earth due to transmission limitations. As soon as the marsquake service team spots distinctive features, they request the full-rate data for this period and scrutinize it upon arrival. Now, the journal Nature Geoscience published a series of articles on the results of the mission in the first months of operation on Mars.

As reported in these articles, InSight recorded 174 events until the end of September 2019. Since then, the measurements have continued leading to more than 450 observed marsquakes as of today, which have not yet been analysed in detail. This accounts for one event a day on average. The data allows researchers observing how seismic waves travel through the planet and unveiling its internal characteristics – similar to how x-rays are used in medical tomography. Before InSight landed, researchers had developed a wide range of possible models to represent the internal structure of the red planet. The recorded marsquakes, already after few months, enable refining the understanding of the structure of the planet and to reduce the uncertainties.

Marsquakes are similar to the seismic events we see on Earth, although they are generally of smaller magnitude. The 174 registered marsquakes can be categorized into two families: One includes 24 low-frequency events with magnitudes between 3 and 4, as documented in the papers, with waves propagating through the Martian mantle. A second family of marsquakes comprises 150 events with smaller magnitudes, shallower hypocentral depth and high frequency waves trapped in the Martian crust. “Marsquakes have characteristics already observed on the Moon during the Apollo era, with a long signal duration (10 to 20 minutes) due to the scattering properties of the Martian crust”, explains ETH Professor Giardini. In general, however, he says, interpreting marsquake data is very challenging and in most cases, it is only possible to identify the distance but not the direction from which the waves are arriving.

InSight opens a new era for planetary seismology. The SEIS performance exceeded so far expectations, considering the harsh conditions on Mars, characterized by temperatures ranging from minus 80 to 0 degrees Celsius every day and by strong wind oscillations. Indeed wind shakes the InSight lander and its instrumentation during the day leading to a high level of ambient noise. However, at sunset, the winds calm down allowing recording the quietest seismic data ever collected in the solar system. As a result, most seismic events detected on Mars by SEIS occurred in the quiet night hours. The challenging environment also requires to carefully distinguishing between seismic events and signals originating from movements of the lander, other instruments or atmospheric-induced perturbances.

The hammering by the HP3 instrument (another InSight experiment) and the close passage of whirlwinds (dust devils), recorded by SEIS, allow to map the physical properties of the shallow soil layers just below the station. We now know that SEIS landed on a thin, sandy layer reaching a few meters deep, in the middle of a 20 meter-wide ancient impact crater. At greater depths, the Martian crust has properties comparable to Earth’s crystalline massifs but appears to be more fractured. The propagation of the seismic waves suggest that the upper mantle has a stronger attenuation compared to the lower mantle.

InSight landed in a rather quiet region of Mars, as no events near the station have been recorded up to now. The three biggest events were located in the Cerberus Fossae region about 1’500 km away. It is a tectonic graben system, caused by the weight of the Elysium Mons, the biggest volcano in the Elysium Planitia area. This provides strong evidence that seismic activity on Mars is not only a consequence of the cooling and therewith the shrinking of the planet but also induced by tectonic stress. The total seismic energy released on Mars lies between the one of Earth and of the Moon.

SEIS, complementary to other InSight measurements, also meaningfully contributed data to better understand the meteorological processes on Mars. The instrument’s sensitivity to both wind and atmospheric pressure allowed identifying meteorological phenomena characteristic of Mars, including the many dust devils that pass by the spacecraft every afternoon.

More detailed results of the seismic analysis and additional findings of the InSight mission can be accessed in the series of papers recently published in Nature Geosciences: The seismicity of Mars, Crustal and time-varying magnetic fields at the InSight landing site on Mars, The atmosphere of Mars as observed by InSight, Initial results from the InSight mission on Mars

Learn more about the NASA InSight mission: https://mars.nasa.gov/insight/ and about ETH Zurich’s involvement in InSight: www.insight.ethz.ch

2020-02-17

LabQuake: taking lab scale studies of earthquakes to the next level

LabQuake: taking lab scale studies of earthquakes to the next level

In the beginning of February, the Swiss Seismological Service (SED) at ETH Zurich received a very special delivery: An 11-ton and 2.4 x 2.5 x 1 meters machine that can induce small earthquakes in palm-sized rock samples under conditions that are representative for the Earth’s crust in 4–8 km depth. This apparatus is called LabQuake and has been installed in the Rock Physics and Mechanics Laboratory under the responsibility of Dr. Claudio Madonna. LabQuake will enable a new research direction for the SED – Laboratory Seismology – aimed at gaining a better understanding of earthquake physics, for example in the context of induced earthquakes triggered by deep geothermal stimulations. Dr. Paul Selvadurai is leading the newly created Laboratory Seismology research group.

To develop a better understanding of nature, scientist often examine complex problems in the laboratory where they control the environment, repeat experiments and place dense arrays of sensors. With LabQuake, scientists induce tens of thousands of very small earthquakes – so-called nano-seismic events that produce the same order of energy as an insect flapping its wings once – in rock samples and observe how they form, what controls them, and why they cease. To this end, LabQuake is equipped with various sensors, measuring in great detail the evolution of nano-seismicity, strain and pore-pressure within the rock sample.

Unique in the world

LabQuake exposes rock samples of a maximum size of 7.6 cm to conditions at which deep geothermal energy plants operate: temperatures of up to 170° Celsius and a confining pressure of 170 MPa, which corresponds approximately to 1678 atmospheres or a 17.3 km high water column. The maximum force that the scientists can apply to the rock samples equals to the weight of 125 mid-size SUVs (about 2500 kN).

One of the first applications of LabQuake will be to repeat experiments on rock samples collected in underground research labs. LabQuake ideally supplements experiments at the deca-meter scale performed in the Grimsel In-situ Stimulation and Circulation (ISC) project. Scientists test hypotheses from this project and downscale them to LabQuake. Afterwards, they upscale the new findings and apply them to field scale experiments that are conducted within the Bedretto Laboratory for Geoenergies. Hence, LabQuake bridges the gap between projects at different scales and contributes to improve their accuracy and their performance.

The finances for LabQuake amount to roughly 1.2 million Swiss Francs and were secured through the start-up fund of the Professorship Wiemer, with contributions from the SNF R-equipment programme, the ETH equipment programme and the department of Earth Sciences.

To see how LabQuake was delivered to the SED, watch the time-lapse video here.

2020-01-25

[Available in DE / FR] Erdbeben im Turtmanntal (VS)

[Available in DE / FR] Erdbeben im Turtmanntal (VS)

Am Samstag, den 25. Januar 2020, ereignete sich um 20:13 Uhr (Ortszeit) ein Erdbeben der Magnitude 3.0 in einer Tiefe von ca. 4 km unterhalb des Turmanntals (VS) zwischen dem Val d’Anniviers und dem Mattertal.

Das Erdbeben wurde weiträumig verspürt, insbesondere im Rhonetal und Mattertal. Beim SED gingen in der Stunde nach dem Beben über 100 Verspürtmeldungen ein. Bei einem Erdbeben dieser Stärke sind keine Schäden zu erwarten.

Kurz zuvor, um 20:07 (Ortszeit), ereignete sich westlich von Realp (UR) ein Beben mit einer Magnitude von 2.4 bei einer Tiefe von rund 9 km, welches jedoch kaum verspürt wurde. Zwischen diesen beiden Beben gibt es keinen direkten Zusammenhang.

TOPICS

Earthquake

Help, the Earth Is Shaking!

Help, the Earth Is Shaking!

Earthquakes are inevitable, but the damage they may be expected to cause can be mitigated in relatively simple ways. Find out the recommended behaviour before, during and after a powerful earthquake.

Learn more

Knowledge

Earthquake Country Switzerland

Earthquake Country Switzerland

Switzerland experiences between 1'000 and 1'500 earthquakes a year. Swiss citizens actually feel somewhere between 10 and 20 quakes a year, usually those with a magnitude of 2.5 or above. Based on the long-term average, 23 quakes with a magnitude of 2.5 or above occur every year. Find out more about the natural hazards with the greatest damage-causing potential in Switzerland.

Learn more

Alerting

Always Informed

Always Informed

If you want to be kept informed at all times, here you will find an overview of the various information services provided by the Swiss Seismological Service (SED).

Learn more

Knowledge

Earthquake Hazard

Earthquake Hazard

In Switzerland, earthquakes are the natural hazard with the greatest potential for causing damage. They cannot currently be prevented or reliably predicted. But, thanks to extensive research, much is now known about how often and how intensely the earth could shake at a given location in the future. Consult a variety of different maps using our interactive web tool to find out how likely certain earthquakes are in Switzerland.

Learn more

Research & Teaching

Fields of Research

Fields of Research

We are often asked what staff at the SED do when no earthquakes are occurring. The answer is they conduct research in a variety of fields, constituting SED's main scientific activities described in our research field section.

Learn more

 

About Us

Swiss Seismological Service (SED)

Swiss Seismological Service (SED)

The Swiss Seismological Service (SED) at ETH Zurich is the federal agency responsible for monitoring earthquakes in Switzerland and its neighboring countries and for assessing Switzerland’s seismic hazard. When an earthquake happens, the SED informs the public, authorities, and the media about the earthquake’s location, magnitude, and possible consequences. The activities of the SED are integrated in the federal action plan for earthquake precaution.

Learn more

Earthquakes

Earthquake Monitoring

Earthquake Monitoring

Around 10 to 20 times a year you will hear or read about an earthquake occurring in Switzerland. However, the vast majority of quakes recorded by the SED go unnoticed by the general public because they fall below the threshold of human perception and can only be detected by sensitive measuring devices. The Swiss Seismological Service (SED) operates a network of more than 200 seismic stations across Switzerland.

Learn more

Research and Teaching

Products and Software

Products and Software

Go to our Products page for access to seismic data and various apps.

Learn more