MENU
The page content begins here

Swiss Seismological Service (SED)

The Swiss Seismological Service (SED) at ETH Zurich is the federal agency for earthquakes. Its activities are integrated in the federal action plan for earthquake precaution.

Felt Earthquakes in Switzerland

Local Time
Mag.
Location
Felt?
2017-10-03 17:16 2.5 Bosco/Gurin TI Slightly felt

Latest Earthquakes

Local Time
Magnitude
Location
2017-10-23 12:35 0.8 Zinal VS
2017-10-23 12:18 1.3 Bulle FR
2017-10-23 10:10 1.5 Montafon A
2017-10-23 02:32 2.0 Cluses F
2017-10-22 03:29 0.8 Chamonix F
2017-10-21 12:53 0.9 Chamonix F

Swiss Earthquakes Counter

since 01.01.2017 
000

Recent earthquakes magnitude 4.5 or greater

Time (UTC)
Mag.
Region
2017-10-23 01:17:33 4.5 IONIAN SEA
2017-10-21 12:56:44 5.3 JAN MAYEN ISLAND REGION
2017-10-15 03:42:43 4.5 CRETE, GREECE
2017-10-14 09:55:38 4.5 Greece
2017-10-12 15:50:35 4.5 JAN MAYEN ISLAND REGION
2017-10-11 22:49:44 5.1 Aegean Sea
2017-10-10 19:59:25 4.8 DODECANESE IS.-TURKEY BORDER REG
2017-10-05 10:11:10 4.6 WESTERN IRAN
2017-09-29 16:08:40 4.6 Turkey
2017-09-25 23:57:31 4.5 Greenland Sea
2017-09-22 04:20:21 4.5 NEAR THE COAST OF WESTERN TURKEY
2017-09-17 14:23:04 4.6 Iceland
2017-09-11 16:20:15 5.0 Greece

Recent earthquakes magnitude 6 or greater

UTC Time
Magnitude
Location
2017-10-18 12:00:59 6.0 Tonga Islands
2017-10-10 18:53:27 6.7 Bouvet Island region
2017-10-10 06:32:20 6.3 Northern Chile
2017-10-08 22:34:33 6.6 Rat Islands, Aleutian Islands, United States
2017-10-08 20:48:58 6.3 Balleny Islands region
2017-10-08 14:04:38 6.1 Tonga Islands
2017-10-06 07:59:33 6.0 Off east coast of Honshu, Japan
2017-10-06 07:59:29 6.4 OFF EAST COAST OF HONSHU, JAPAN
NEWS

10/04/2017

Investigating tsunami hazard in Switzerland

Investigating tsunami hazard in Switzerland

Tsunamis are not limited to the ocean. On rare occasions, large flood waves also occur in lakes, including those in Switzerland. According to historical reports and investigations of lake sediments, a wave up to 8 m high swept across Lake Lucerne in 1601, resulting in widespread flooding. It was triggered by a magnitude 5.9 earthquake in the canton of Nidwalden, whose tremors caused several underwater landslides in Lake Lucerne and a rock avalanche on the Bürgenstock, which in turn triggered the tsunami. Tsunamis have also been recorded on Lake Geneva, Lake Brienz and Lake Lauerz (see Lake Tsunamis). 

A research project recently approved by the Swiss National Science Foundation aims to determine the risks posed by these rare events, what it takes to trigger lake tsunamis, how often they have occurred in the past, and the impact they create. As part of the project, scientists from ETH Zurich, the University of Bern and the University of Bremen's Centre for Marine Environmental Sciences (Marum) are planning to install nine ocean-bottom seismometers on the bed of Lake Lucerne. They will be the core equipment used to take seismic and geotechnical measurements of the lake sediments. Applications were also submitted to the Cantons of Lucerne, Nidwalden and Schwyz, but Lake Lucerne was chosen because of its location in a region of comparatively high seismic hazard and also because a lot is known about the lake bottom from previous research projects.

The plan is to place the measuring devices at various locations in the lake for a period of 22 months. The seismic data collected, combined with other measurement results, will be used to characterise the internal structure of slope instabilities, to better understand their slide mechanics and to model the generation and propagation of tsunami waves. Such a comprehensive investigation of hazard processes beneath the water surface is the first of its kind in Switzerland and its findings will help to improve the understanding of such processes around the world. The total cost of the project is CHF 2 million, much of which will be spent on the complex process of collecting the measurements.

09/25/2017

Measuring Strong Earthquakes with GPS

Measuring Strong Earthquakes with GPS

GPS is well known to navigate to a specific location. Less known is another feature: GPS signals can also be used to measure strong earthquakes. This reveals a recently published study in the “Bulletin of the Seismological Society of America” in cooperation with researchers from the Swiss Seismological Service (SED) at ETH Zurich. Complementary to conventional seismic measurements, GPS data can support the near real time monitoring of earthquakes. Integrating GPS data would allow a more accurate calculation of ShakeMaps that are vital for emergency management.

Generally, accelerometers, measuring the acceleration of the ground motion, are used to register strong earthquakes. The ground motion they can record is limited in the low frequency range (slow motion) while GPS instruments are conversely limited in the high frequency range (rapid motion). Permanent GPS (GNSS) stations are covering the globe to serve as reference points for surveying and positioning. GPS instruments are therefore complementary in the way they record ground vibrations and their network is complementary in terms of spatial coverage.

To make use of these advantages, the aforementioned study is investigating what future improvements of GPS data processing will bring (see red area in the graphic). Recording strong earthquakes could be further optimized by increasing the sampling rate of GPS stations by a factor of two to five. GPS data is an added value to conventional accelerometric data for events of a magnitude 5.8 or greater within a radius of 10 km. Their integration into emergency tools such as ShakeMaps might therefore be of great value in countries with a high seismic hazard, like Japan.

Figure: Capability of GPS permanent stations to record strong earthquakes in real-time (blue) as a function of magnitude and distance from the fault rupture. What is currently doable after post processing (red) will be achieved in the future in real-time.
Clotaire Michel, Krisztina Kelevitz, Nicolas Houlié, Benjamin Edwards, Panagiotis Psimoulis, Zhenzhong Su, John Clinton, Domenico Giardini; The Potential of High‐Rate GPS for Strong Ground Motion Assessment. Bulletin of the Seismological Society of America ; 107 (4): 1849–1859. doi: https://doi.org/10.1785/0120160296

09/14/2017

[Available in DE] Mit SRF „Einstein“ im Epizentrum

Wenn das gesamte Mobiliar eines Wohnzimmers zu Bruch geht, sind auch gestandene Seismologen erschüttert. Beim geschilderten Erdbeben ist dank einer sorgfältigen Vorbereitung im Erdbebensimulator des CPPS nochmals alles gut ausgegangen, wie die SRF Sendung „Einstein“ zum Thema zeigt. Neben diesem erschütternden Erlebnis befasst sich die Sendung mit kurz- und längerfristigen Massnahmen, um die Auswirkungen von Erdbeben einzudämmen. Im Zentrum steht neben einer erdbebengerechten Bauweise die Erdbebenfrühwarnung. Ein solches Frühwarnsystem wird derzeit mit Unterstützung der DEZA vom Schweizerischen Erdbebendienst (SED) an der ETH Zürich in enger Zusammenarbeit mit den lokalen Partnerorganisationen in Nicaragua aufgebaut.

09/12/2017

Gearing up to Explore the Inner Life of Mars

Gearing up to Explore the Inner Life of Mars

The InSight Mars mission is planned to launch in spring 2018 and will place a seismometer on the surface of Mars six months later. Scientists at ETH Zurich from the Seismology and Geodynamics (SEG) group as well as the Swiss Seismological Service (SED) are participating in the Marsquake Service that will routinely detect and characterise seismic signals recorded by the sensor. The data will be used to explore the inner life of the planet.

However, with only one seismometer this is a very challenging task. In contrast to a seismic network on earth with numerous stations, additional reference points that constrain the origin of the signals registered is missing. In preparation of the mission, scientists with experience in earthquake location and characterisation problems are invited to share their knowledge by participating in a blind test.

Based on a synthetic dataset, we aim to improve the planned single station location methods to be used in the routine analysis of the martian dataset. The waveforms provided in the blind test mimic both the streams of data that will be available from InSight, as well as the expected level of tectonic and impact seismicity and the noise conditions on Mars. The test is 'blind' in the sense that the actual event catalogue is not provided to any participants, and the structural model used to generate the seismograms has been selected from a suite of 14 candidate models. In course of the blind test, we hope to learn from the methodologies proposed by the community. The blind test is described in detail in a recent publication in SRL (Clinton et al., 2017, Preparing for InSight: an invitation to participate in a blind test for Martian seismicity, Seism. Res. Letters, doi: 10.1785/0220170094).

The test officially opened on 1 August 2017 and registration will close on 1 October 2017. All participants must provide their event catalogues by 1 February 2018.  A website where interested parties can register and access seismic waveforms is available at http://blindtest.mars.ethz.ch.

All groups who contribute a catalogue to the blind test will be invited to be co-authors on a paper summarising methods and performance with respect to the true event catalogue that will then be released.

We encourage scientists and students, in teams of any size, to investigate the blind test dataset and we look forward to your participation!

TOPICS

Earthquake

Help, the Earth Is Shaking!

Help, the Earth Is Shaking!

Earthquakes are inevitable, but the damage they may be expected to cause can be mitigated in relatively simple ways. Find out the recommended behaviour before, during and after a powerful earthquake.

Learn more

Knowledge

Earthquake Country Switzerland

Earthquake Country Switzerland

Switzerland experiences between 500 and 800 earthquakes a year, around 10 of which are powerful enough (with a magnitude of approximately 2.5 or higher) to be felt by the country's inhabitants. Find out more about the natural hazards with the greatest damage-causing potential in Switzerland.

Learn more

Alerting

Always Informed

Always Informed

If you want to be kept informed at all times, here you will find an overview of the various information services provided by the Swiss Seismological Service (SED).

Learn more

Knowledge

Earthquake Hazard

Earthquake Hazard

In Switzerland, earthquakes are the natural hazard with the greatest potential for causing damage. They cannot currently be prevented or reliably predicted. But, thanks to extensive research, much is now known about how often and how intensely the earth could shake at a given location in the future. Consult a variety of different maps using our interactive web tool to find out how likely certain earthquakes are in Switzerland.

Learn more

Research & Teaching

Fields of Research

Fields of Research

We are often asked what staff at the SED do when no earthquakes are occurring. The answer is they conduct research in a variety of fields, constituting SED's main scientific activities described in our research field section.

Learn more

 

About Us

Swiss Seismological Service (SED)

Swiss Seismological Service (SED)

The Swiss Seismological Service (SED) at ETH Zurich is the federal agency responsible for monitoring earthquakes in Switzerland and its neighboring countries and for assessing Switzerland’s seismic hazard. When an earthquake happens, the SED informs the public, authorities, and the media about the earthquake’s location, magnitude, and possible consequences. The activities of the SED are integrated in the federal action plan for earthquake precaution.

Learn more

Earthquakes

Earthquake Monitoring

Earthquake Monitoring

Around 10 times a year on average you will hear or read about an earthquake occurring in Switzerland. However, the vast majority of quakes recorded by the SED go unnoticed by the general public because they fall below the threshold of human perception and can only be detected by sensitive measuring devices. The Swiss Seismological Service (SED) operates a network of more than 150 seismic stations across Switzerland.

Learn more

Research and Teaching

Products and Software

Products and Software

Go to our Products page for access to seismic data and various apps.

Learn more