Press tab to activate screen reader mode
  • Home
  • Language
  • Navigation menu
  • Search
  • Plain language
  • Content
  • Contact
MENU
Swiss Seismological Service logo ETH logo
DE EN FR IT
Plain language
DE EN FR IT
×
  • Home
  • Earthquakes
    • Switzerland
    • Europe
    • World
    • Maps
    • Report an earthquake
    • What to do?
      • Behavioural recommendations
      • Earthquakes abroad
      • Earthquake-resistant construction
      • Earthquake insurance
    • Always informed
      • Alerting
      • Receive information
      • Rapid impact assessment
      • ShakeMap
      • Earthquake announcements
  • Monitoring
    • Measuring earthquakes
    • National seismic network
    • Special networks
      • Overview
      • Geothermal energy Haute-Sorne
      • Geothermal energy Yverdon-les-Bains
      • Geothermal energy Geneva Basin
      • Geothermal energy Vinzel
      • Geological repository Northeastern Switzerland
      • Monitoring of the Borehole Basel-1
      • Past projects
    • Realtime seismograms
      • Last 5 minutes
      • Last 20 minutes
      • Last 2 hours
      • Last 24 hours
    • Setup of a monitoring station
    • Nuclear test ban treaty monitoring
  • Earthquake country Switzerland
    • Overview
    • Hazard
      • Overview
      • Components
      • Earthquake hazard model
    • Risk
      • Overview
      • Components
      • Earthquake risk model
      • Earthquake risk tool
    • Earthquake scenarios
    • Earthquake regions
      • Grisons
      • Valais
      • Basel
    • Historical earthquakes
      • The ten strongest
      • Basel 1356
      • Sierre 1946
    • Earthquake swarms
      • Introduction
      • Sarnen 1964
      • Diemtigen 2014 - 2015
  • Knowledge
    • Causes of earthquakes
      • In general
      • In Switzerland
      • In Europe
      • Induced earthquakes
    • Effects of earthquakes
    • Earthquake prediction
    • Earthquake data & web portals
      • Overview
      • Earthquake monitoring software
      • Station information
      • Earthquake catalogues
      • Waveform data
      • FDSN web services
      • Earthquake early warning
      • ShakeMap
      • Software archive
    • Geothermal energy & earthquakes
      • Geothermal energy in brief
      • Forms of geothermal energy
      • Geothermal energy & induced earthquakes
      • Measures to control induced seismicity
      • Geothermal energy in Switzerland
      • Geothermal energy and the SED
      • Seismological consulting (GEOBEST2020+)
      • Fracking
    • Quakes on Mars
    • Frequently asked questions (FAQ)
  • Research & teaching
    • Projects
    • Publications
    • Teaching & training
    • Schatzalp Workshop 2025
  • News & services
    • News articles
      • 2025
      • 2024
      • Archive
    • For schools
    • Brochures
    • Quiz
    • Videos & games
    • Earthquake simulator
    • Earthquake literature
  • About us
    • Contact & media enquires
    • Portrait
      • Tasks & organisation
      • History
      • Independence & transparency
    • Sections
    • All employees
    • Careers
    • Cooperations
    • Intranet
The content of the page starts here

Detection, characterization and monitoring of instabilities with seismic technologies

  • Overview
  • Publications
Project image

In recent years, we have developed efficient geophysical and seismological measurement tools that enable the characterization of instabilities based on their vibrational behavior and are suitable for monitoring. New methods for the characterization of rock instabilities in terms of extent, volume, and condition, have been developed along with a derived classification and corresponding measurement strategies. Additionally, continuous long-term observations with seismometers have been developed. In the future, such tools will increasingly contribute to quantifying the risks of spontaneous and earthquake-induced instability failures and complement conventional techniques.

 

Currently, real-time monitoring of instabilities is the only way to provide continuous information for risk assessment and early warning before an event occurs. With seismic monitoring, we are able to monitor the internal properties (stiffness, vibration behavior, amplification, damping, vibration polarization) of the instability with a very high precision. This new component could become standard practice due to its high sensitivity to changes in slope characteristics. The combination of our monitoring, seismic site characterization, integration of deformation measurements and environmental data, and numerical modeling will provide insights into the driving factors of slope failure, and contribute to hazard and risk assessment of unstable slopes.

 

The aim of this applied project is the national implementation of the developed methods. The work includes the practical continuation of existing measurement sites in order to apply the methods in practice. Our contribution will show how vibration measurements can be used in the future to quickly characterize potential slope instabilities in terms of extent, volume and condition, and how the interpretation can contribute to the optimal placement of measuring systems (seismic, GNSS, total station, etc.).

Project Leader at SED

Prof. Donat Fäh

SED Project Members

Franziska Glüer, Mauro Häusler, Xavier Borgeat

Funding Source

Bundesamt für Umwelt 00.5032.PZ/ EC049A5A7

Duration

2023-2025

Keywords

Earthquake induced mass movements, unstable rock-slopes, real-time monitoring, seismic methods

Research Field

Earthquake Hazard and Risk, Geo Risks

Borgeat, X., Glueer, F., Häusler, M., Hobiger M. and D. Fäh (2024). On the variability of the seismic response of the active rock slope in Brienz/Brinzauls (Switzerland). Planned for submission to Geophysical Journal International. 

Burjánek, J., Gischig, V., Moore, J.R. and Fäh, D. (2018). Ambient vibration characterization and monitoring of a rock slope close to collapse. Geophys. J. Int. 212, 297-310. https://academic.oup.com/gji/article/212/1/297/4331640

Burjanek, J., Kleinbrod, U., & Fäh, D. (2019). Modeling the Seismic Response of Unstable Rock Mass With Deep Compliant Fractures. Journal of Geophysical Research-Solid Earth 124)12), 13039-13059. doi: 10.1029/2019JB018607

Cauzzi, C., Fäh, D., Wald, D.J., Clinton, J., Losey, S. and S. Wiemer (2018). ShakeMap-based prediction of earthquake-induced mass movements in Switzerland calibrated on historical observations. Natural Hazards 92 (2), 1211-1235. 

Glueer, F., Häusler, M., Gischig, V. and Fäh, D. (2021). Coseismic Stability Assessment of a Damaged Underground Ammunition Storage Chamber Through Ambient Vibration Recordings and Numerical Modelling. Front. Earth Sci. doi: 10.3389/feart.2021.773155

Glueer, F., Mreyen, A.-S., Cauchie, L., Havenith, H.-B., Bergamo, P., Halló, M., & Fäh, D. (2024). Integrating Seismic Methods for Characterizing and Monitoring Landslides: A Case Study of the Heinzenberg Deep-Seated Gravitational Slope Deformation (Switzerland). Geosciences 14 (2), 28. doi: 10.3390/geosciences14020028

Häusler, M., Michel, C., Burjanek, J., & Fäh, D.  (2019). Fracture Network Imaging on Rock Slope Instabilities Using Resonance Mode Analysis. Geophysical Research Letters 46 (12), 6497-6506. doi: 10.1029/2019gl083201

Häusler, M., Glueer, F., Burjánek, J., & Fäh, D.  (2020). Chasing a hidden fracture using seismic refraction tomography: case study Preonzo, Switzerland. EGU2020-9701. In: Paper presented at the EGU General Assembly. doi: 10.5194/egusphere-egu2020-9701

Häusler, M., Michel, C., Burjánek, J., and Fäh, D. (2021). Monitoring the Preonzo rock slope instability using resonance mode analysis. J. Geophys. Res. Earth Surf. doi: 10.1029/2020JF005709

Häusler, M., Gischig, V., Thöny, R., Glueer, F. and Fäh, D. (2021). Monitoring the changing seismic site response of a fast-moving rockslide (Brienz/Brinzauls, Switzerland). Geophysical Journal International 229 (1), 299-310. doi: 10.1093/gji/ggab473

Häusler, M., Glueer, F., & Fäh, D.  (2024). The changing seismic site response of the Brienz/Brinzauls rock slope instability: insights from 5 years of monitoring before, during and after a partial collapse in June 2023. ICL open access book series “Progress in Landslide Research and Technology”, 2-12. 

Kleinbrod, U., Burjánek, J., Fäh, D. (2017). On the seismic response of instable rock slopes based on ambient vibration recordings. Earth. Planets and Space. doi: 10.1186/s40623-017-0712-5

Kleinbrod, U., Huggentobler, M., Burjánek, J., Aman, F., Fäh, D. (2017). A comparative study on seismic response of two unstable rock slopes within same tectonic setting but different activity level. Geophys. J. Int 211 (3), 1428-1448. doi: 10.1093/gji/ggx376

Kleinbrod, U., Burjanek, J., & Fah, D. (2019). Ambient vibration classification of unstable rock slopes: A systematic approach. Engineering Geology 249, 198-217. doi: 10.1016/j.enggeo.2018.12.012

Oprsal, I., Thun, J., Burjánek, J. and D. Fäh (2020). Measurements and modeling of the post-failure micro-deformations and tilts of the Preonzo unstable slope, Alpe di Roscioro, Switzerland. Engineering Geology. doi: 10.1016/j.enggeo.2020.105919

Weber, S., Fäh, D. Beutel., J., Faillettaz, J., Gruber, S., Vieli, A. (2018). Ambient seismic vibrations in steep bedrock permafrost used to infer variations of ice-fill in fractures. Earth and Planetary Science Letters, 119-127. doi: 10.1016/j.epsl.2018.08.042

Weber, S., Beutel, J., Häusler, M., Geimer, P.R., Fäh, D. and Moore, J.R (2021). Spectral amplification of ground motion linked to resonance of large-scale mountain landforms. Earth and Planetary Science Letters. doi: 10.1016/j.epsl.2021.117295

Swiss Seismological Service
Sonneggstrasse 5
CH-8092 Zurich
Phone SED secretariat
+41 44 633 21 79 (during office hours)

Imprint | Disclaimer  | ©2024 ETH Zurich