Press tab to activate screen reader mode
  • Home
  • Language
  • Navigation menu
  • Search
  • Plain language
  • Content
  • Contact
MENU
Swiss Seismological Service logo ETH logo
DE EN FR IT
Plain language
DE EN FR IT
×
  • Home
  • Earthquakes
    • Switzerland
    • Europe
    • World
    • Maps
    • Report an earthquake
    • What to do?
      • Behavioural recommendations
      • Earthquakes abroad
      • Earthquake-resistant construction
      • Earthquake insurance
    • Always informed
      • Alerting
      • Receive information
      • Rapid impact assessment
      • ShakeMap
      • Earthquake announcements
  • Monitoring
    • Measuring earthquakes
    • National seismic network
    • Special networks
      • Overview
      • Geothermal energy Haute-Sorne
      • Geothermal energy Yverdon-les-Bains
      • Geothermal energy Geneva Basin
      • Geothermal energy Vinzel
      • Geological repository Northeastern Switzerland
      • Monitoring of the Borehole Basel-1
      • Past projects
    • Realtime seismograms
      • Last 5 minutes
      • Last 20 minutes
      • Last 2 hours
      • Last 24 hours
    • Setup of a monitoring station
    • Nuclear test ban treaty monitoring
  • Earthquake country Switzerland
    • Overview
    • Hazard
      • Overview
      • Components
      • Earthquake hazard model
    • Risk
      • Overview
      • Components
      • Earthquake risk model
      • Earthquake risk tool
    • Earthquake scenarios
    • Earthquake regions
      • Grisons
      • Valais
      • Basel
    • Historical earthquakes
      • The ten strongest
      • Basel 1356
      • Sierre 1946
    • Earthquake swarms
      • Introduction
      • Sarnen 1964
      • Diemtigen 2014 - 2015
  • Knowledge
    • Causes of earthquakes
      • In general
      • In Switzerland
      • In Europe
      • Induced earthquakes
    • Effects of earthquakes
    • Earthquake prediction
    • Earthquake data & web portals
      • Overview
      • Earthquake monitoring software
      • Station information
      • Earthquake catalogues
      • Waveform data
      • FDSN web services
      • Earthquake early warning
      • ShakeMap
      • Software archive
    • Geothermal energy & earthquakes
      • Geothermal energy in brief
      • Forms of geothermal energy
      • Geothermal energy & induced earthquakes
      • Measures to control induced seismicity
      • Geothermal energy in Switzerland
      • Geothermal energy and the SED
      • Seismological consulting (GEOBEST2020+)
      • Fracking
    • Quakes on Mars
    • Frequently asked questions (FAQ)
  • Research & teaching
    • Projects
    • Publications
    • Teaching & training
    • Schatzalp Workshop 2025
  • News & services
    • News articles
      • 2025
      • 2024
      • Archive
    • For schools
    • Brochures
    • Quiz
    • Videos & games
    • Earthquake simulator
    • Earthquake literature
  • About us
    • Contact & media enquires
    • Portrait
      • Tasks & organisation
      • History
      • Independence & transparency
    • Sections
    • All employees
    • Careers
    • Cooperations
    • Intranet
The content of the page starts here

Earthquake Precursors

  • Overview
Project image

Our present knowledge about earthquakes does not yet allow us to reliably forecast earthquakes. Therefore, the study of precursors is an essential step in the direction of earthquake forecasting. Precursors can be anomalous seismic patterns or other phenomena such as peculiar animal behavior, or electromagnetic anomalies etc., which indicate the incidence of a large event. We focus in our studies on seismic precursors, namely quiescence, which is expressed through reduced seismic activity, accelerated seismicity (ASR) and short term foreshocks. The mentioned precursors are observed in many selected earthquake sequences in the past. However, there is skepticism if these precursors happen systematically; some studies explain their occurrence rather as a random temporary perturbation of normal seismicity which is accidentally followed by a large earthquake.

We believe that systematic investigations on the occurrence of precursors give essential evidence for or against their existence. We chose to perform these investigations with statistical tools, hence by evaluating location, time and magnitudes of earthquakes from several regional earthquake catalogs of the world, to obtain representative precursor statistics.

We find that small earthquakes, as they occur more frequently, could facilitate the detection of precursory patterns (Mignan, 2014). We study statistical models used to describe earthquake occurrence and the impact of the choice of the lowest magnitude on them (Seif et al, 2016, submitted). Using these models we evaluate if foreshock occurrence differs from normal seismicity. We also want to specify how often foreshock patterns are followed by large events or not (true/false alarm rate). In the future remaining precursory patterns, quiescence and accelerated seismicity, will be investigated in the same way. We hope that the statistical analysis will allow us to better understand the physical processes which lead to the occurrence of precursors.

Project Leader at SED

Dr. Arnaud Mignan

SED Project Members

Stefanie Seif, Dr. Jeremy Zechar, Prof. Stefan Wiemer

Funding Source

ETH Grants

Duration

2013 - August 2018

Keywords

Precursors, foreshocks, cut-off magnitude, ETAS

Research Field

Earthquake Statistics, Earthquake Forecasting

Swiss Seismological Service
Sonneggstrasse 5
CH-8092 Zurich
Phone SED secretariat
+41 44 633 21 79 (during office hours)

Imprint | Disclaimer  | ©2024 ETH Zurich