Press tab to activate screen reader mode
  • Home
  • Language
  • Navigation menu
  • Search
  • Plain language
  • Content
  • Contact
MENU
Swiss Seismological Service logo ETH logo
DE EN FR IT
Plain language
DE EN FR IT
×
  • Home
  • Earthquakes
    • Switzerland
    • Europe
    • World
    • Maps
    • Report an earthquake
    • What to do?
      • Behavioural recommendations
      • Earthquakes abroad
      • Earthquake-resistant construction
      • Earthquake insurance
    • Always informed
      • Alerting
      • Receive information
      • Rapid impact assessment
      • ShakeMap
      • Earthquake announcements
  • Monitoring
    • Measuring earthquakes
    • National seismic network
    • Special networks
      • Overview
      • Geothermal energy Haute-Sorne
      • Geothermal energy Yverdon-les-Bains
      • Geothermal energy Geneva Basin
      • Geothermal energy Vinzel
      • Geological repository Northeastern Switzerland
      • Monitoring of the Borehole Basel-1
      • Past projects
    • Realtime seismograms
      • Last 5 minutes
      • Last 20 minutes
      • Last 2 hours
      • Last 24 hours
    • Setup of a monitoring station
    • Nuclear test ban treaty monitoring
  • Earthquake country Switzerland
    • Overview
    • Hazard
      • Overview
      • Components
      • Earthquake hazard model
    • Risk
      • Overview
      • Components
      • Earthquake risk model
      • Earthquake risk tool
    • Earthquake scenarios
    • Earthquake regions
      • Grisons
      • Valais
      • Basel
    • Historical earthquakes
      • The ten strongest
      • Basel 1356
      • Sierre 1946
    • Earthquake swarms
      • Introduction
      • Sarnen 1964
      • Diemtigen 2014 - 2015
  • Knowledge
    • Causes of earthquakes
      • In general
      • In Switzerland
      • In Europe
      • Induced earthquakes
    • Effects of earthquakes
    • Earthquake prediction
    • Earthquake data & web portals
      • Overview
      • Earthquake monitoring software
      • Station information
      • Earthquake catalogues
      • Waveform data
      • FDSN web services
      • Earthquake early warning
      • ShakeMap
      • Software archive
    • Geothermal energy & earthquakes
      • Geothermal energy in brief
      • Forms of geothermal energy
      • Geothermal energy & induced earthquakes
      • Measures to control induced seismicity
      • Geothermal energy in Switzerland
      • Geothermal energy and the SED
      • Seismological consulting (GEOBEST2020+)
      • Fracking
    • Quakes on Mars
    • Frequently asked questions (FAQ)
  • Research & teaching
    • Projects
    • Publications
    • Teaching & training
    • Schatzalp Workshop 2025
  • News & services
    • News articles
      • 2025
      • 2024
      • Archive
    • For schools
    • Brochures
    • Quiz
    • Videos & games
    • Earthquake simulator
    • Earthquake literature
  • About us
    • Contact & media enquires
    • Portrait
      • Tasks & organisation
      • History
      • Independence & transparency
    • Sections
    • All employees
    • Careers
    • Cooperations
    • Intranet
The content of the page starts here

detect-µ

  • Overview
  • Publications
Project image

To a large part, the seismicity of Switzerland is characterized by swarm-like earthquake sequences of natural, and to a minor extent of man-made origin. Many of these sequences have been studied using relative location techniques, which often allowed to constrain the active fault plane of the larger events in a sequence and shed light on the tectonic processes that drive the seismicity. Yet, in the majority of cases the number of located earthquakes was too small to infer the details of the space-time evolution of the sequences, and their statistical parameters (e.g. magnitude-frequency distribution, Omori parameters). Therefore, it has been largely impossible to resolve clear patterns in the seismicity of individual earthquake sequences that are needed to improve our understanding of the mechanisms behind, and the differences between natural and induced earthquake sequences.

In this project we aim to significantly improve the completeness of detected and located earthquakes in the Swiss catalog. We plan to develop techniques that take advantage of the waveform similarity in natural and induced earthquake sequences to detect seismic events several orders of magnitude below the detection threshold of classical signal energy based detectors. Waveform similarity will than further be exploited to derive accurate and consistent magnitudes and locations for even the smallest events of the sequences.

Building on the data from this analysis we plan to study the processes and physics behind natural and induced microseismicity, e.g.:

  • understanding why natural earthquakes occur in swarm-like sequences
  • identifying triggering mechanisms of natural and induced earthquake sequences
  • understanding the differences and similarities of natural and induced earthquake sequences
  • detect and study repeated earthquakes
Project Leader at SED

Toni Kraft

SED Project Members

Marcus Herrmann, Stefan Wiemer

Funding Source

SED, Bundesamt für Energie

Duration

2014-2016

Keywords

Induced Seismicity, Real-time monitoring, Earthquake Statistics

Research Field

Induced Seismicity, Real-time monitoring, Earthquake Statistics

Kraft, T., Diehl, T., Korger, E. and Tormann, T. (2014). Taking Surface Seismic Monitoring to the Nano-Seismic Scale: Results from Natural and Induced Seismic Sequences in Switzerland. AGU Fall Meeting Abstracts 1, 4552.

Swiss Seismological Service
Sonneggstrasse 5
CH-8092 Zurich
Phone SED secretariat
+41 44 633 21 79 (during office hours)

Imprint | Disclaimer  | ©2024 ETH Zurich