## Interpretation of moment tensors of induced earthquakes: a review

#### Václav Vavryčuk

Institute of Geophysics, Prague

### **Decomposition of MT**

Moment tensor represents equivalent body forces at a point source

 $\mathbf{M} = \mathbf{M}^{DC} + \mathbf{M}^{ISO} + \mathbf{M}^{CLVD}$ 



# Interpretation of the DC part of the moment tensor

#### Moment tensors of shear faulting in isotropy

#### **Shear earthquakes in isotropy** (Aki & Richards 2002, Eq. 3.22):

$$M_{kl} = \mu u S (\nu_k n_l + \nu_l n_k)$$

$$M_{kl} = M_0 \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

#### double-couple



- u slip
- S fault area
- $\mu$  shear modulus
- $\nu$  slip direction
- **n** fault normal
- $c_{ijkl}$  elastic parameters

#### **Focal mechanisms**

#### **Events induced in the fluid injection experiment in the KTB site in 2000**



P-wave radiation



Orientation of the DC informs us about the orientation of fractures

Nodal planes: fault plane + auxiliary plane

Vavryčuk et al., (Tectonophysics, 2008)

## **Inversion for stress**

#### Fluid injection in KTB in 2000: focal mechanisms



#### Vavryčuk et al., (Tectonophysics, 2008)

### Fluid injection in KTB: stress inversion



• directions of principal stress axes

$$=\frac{\sigma_1-\sigma_2}{\sigma_1-\sigma_3}$$

Gephart & Forsyth (1984) stress inversion Michael (1984) Angelier (2002)

Vavryčuk et al., (Tectonophysics, 2008)

#### The Geysers geothermal field, CA



Martinez-Garzon et al, (GRL, 2013)

#### Stress variations in the Geysers geothermal field, CA



Martinez-Garzon et al, (GRL, 2013)

# Fault planes indicated from stress

#### **Fault instability concept**



### **Fault instability: definition**



Vavryčuk et al. (Tectonophysics, 2013)

#### Joint inversion for stress and fault orientations



#### Vavryčuk (GJI, 2014)

# Interpretation of the non-DC part of the moment tensor

#### **Shear & tensile faulting**



 $\Sigma$  – fault , **u** – slip,  $\alpha$  – slope angle (deviation of the slip from the fault)

#### **Shear-tensile faulting: radiation patterns and DC**



Vavryčuk (JGR, 2001, 2011)

#### **Diamond and skewed diamond source-type plots**



Vavryčuk (J. Seismology, 2014)

#### **Shear-tensile faulting in source-type plots**



Vavryčuk (J. Seismology, 2014)

# **Tensile faulting versus anisotropy**

## **Shear earthquakes in anisotropy** (Aki & Richards 2002, Eq. 3.19):

 $M_{kl} = uSc_{ijkl}v_kn_l$ 

$$M_{kl} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{12} & M_{22} & M_{23} \\ M_{13} & M_{23} & M_{33} \end{bmatrix}$$

### general mechanism with non-zero DC, CLVD and ISO!



- u slip
- S fault area
- $\mu$  shear modulus
- $\nu$  slip direction
- **n** fault normal
- $c_{ijkl}$  elastic parameters

#### Tensile faulting in isotropic and anisotropic media



Vavryčuk (J. Seismology, 2014)

### **Non-DC components: KTB injection experiment**





Vavryčuk et al., (Tectonophysics, 2008)

#### **Geological structure in KTB**



#### **Retrieved orientation of anisotropy in KTB**





### **Summary**

Moment tensors provide key information about induced seismicity:



Size and orientation of fractures



Fracture mode: shear versus tensile faulting



Stress regime in the source area



 $v_P/v_S$  ratio in the focal zone



Fracture instability



**Orientation of anisotropy**