3D modeling of fault reactivation during CO, injection

Rinaldi, A. P., Vilarrasa, V., Rutqvist, J., Cappa, F.

Introduction

Geological carbon sequestration considered a feasible solution but the overpressure due to large-scale fluid injection may induce seismic events.

Previous 2D model:

- CO₂ injection can cause seismicity (depending on injection rate and initial fault permeability)
- Reactivation may increase CO₂ leakage (but not necessarily) • Fault and site architecture play a role (e.g. seismicity and leakage affected by size of caprock

seismic source

Modeling setup

- TOUGH-FLAC/ECO2N
 - Fully hydro-mechanical coupling
- 100 m storage aquifer,

bounded by 150 m caprock

- Pre-existing normal fault with dip 80°
- CO₂ injection at -1500 m, 1500 m from the fault: 120 kg/s for a 5 years injection period
- Isothermal with gradient 25°C/km
- Initial hydrostatic linear gradient
- Constant pressure and stress boundary
- Extensional stress regime:

ETHzurich

- and/or reservoir)
- Low potential for structural damage

What will change if we account for a full 3D model?

Geomechanics and fluid flow coupling

- Damage zone as high permeability zone
- Fault core with Ubiquitous-joint model (oriented weak plane in a Mohr-Coulomb solid)
- Strain-softening model: friction as function of plastic shear strain

Damage zone: 10⁻¹⁵ m²

porosity as function of mean effective stress (σ'_{M}) , permeability depends on porosity changes (Davies and Davies, 2001)

Vertical well vs Horizontal well:

Overpressure, induced seismicity, and leakage

$\langle \varphi_0 \rangle$

Fault core: 10⁻¹⁷ m²

Anisotropic coupling. Hydraulic parameters depend on anisotropic elasto-plastic properties. Porosity as function of plastic tensile (e_{ftn}) and shear strain (e_{fsp}) , and $\kappa_{hm} = \kappa_0$ dilation (ψ). Permeability as function of normal effective stress (σ'_{n}) and porosity changes (Hsiung et al., 2005). a and *c* empirical constants for normal-closure hyperbola (Bandis et al., 1983)

2D vs 3D

- 2D MODEL: Injection rate 0.05 kg/s/m \rightarrow 0.05×1000×2 \rightarrow 100 kg/s Reactivation at about 100 days with magnitude 3.23 (circular rupture) RUNNING TIME: ~4 hours
- **3D MODEL:** Injection rate 30 kg/s/m \rightarrow 30×4 \rightarrow 120 kg/s Reactivation at about 200 days with magnitude 3.57 RUNNING TIME: ~13 hours

Conclusion

1.0

8.0

0.6

0.4

0.2

0

Overall good agreement between 2D and 3D model

- In 3D model simulations higher injection rate to achieve the same pressure increase.
- 2D model percentage of leakage of about 1.4% increases to 2% in a 3D model
- Differences in temporal evolution because of permeability changes

Horizontal vs Vertical injection well:

- Vertical well: localized but faster pressure increase, then less slip on a smaller area.
- Horizontal well: pressure over a larger space, longer time i to reach the critical pressurization, then larger slip on larger area.
- For vertical well slightly higher permeability in the near-well region, for horizontal well

larger permeability changes along the fault strike, and then leakage varies accordingly.