Short-term seismicity changes at The Geysers geothermal field with different injection volumes

Patricia Martínez - Garzón1, Grzegorz Kwiatek1, Hiroki Sone1, Marco Bohnhoff1,2, Georg Dresen3, Craig Hartline1

1GFZ German Research Centre for Geosciences, Potsdam, Germany 2Free University of Berlin, Institute of Geodetic Sciences, Berlin, Germany 3Calpine Corporation, Middletown, California, USA contact: patricia@gfz-potsdam.de

1 Introduction

Mitigation and control of Induced Seismicity (IS) is a topic of increasing importance and involves understanding of the responsible seismicity mechanisms and the geomechanical reservoir response to fluid injection.

We investigate spatio-temporal patterns, kinematics and source properties of IS at The Geysers geothermal field, CA (Fig. 1), where a change in the stress field orientation during periods of large injection volumes was observed (Martínez-Garzón et al., 2013; Fig. 2).

The IS was reactivated using HypoDD (Waldhauser and Ellsworth, 2000), and fault plane solutions were calculated using FFPIT (Reasenberg and Oppenheimer, 1985). An alignment of strike-slip events indicates the presence of a previously unknown fault favorably oriented with respect to the stress field (Fig. 3).

We thank the Northern California Earthquake Data Center (NCEDC) and the Lawrence Berkeley National Laboratory for the hydraulic parameter data. We thank Calpine Corporation, Middletown, California, USA for additional relevant information about The Geysers geothermal field, the US Geological Survey for discussions providing and for ternary plot code.

1. Stress field orientation changes by approximately 20° (Fig. 2).

2. Spatial Distribution and Source Mechanisms

The IS was reactivated using HypoDD (Waldhauser and Ellsworth, 2000), and fault plane solutions were calculated using FFPIT (Reasenberg and Oppenheimer, 1985). The seismicity cloud is ellipsoidal with its largest axis parallel to the maximum horizontal stress (Fig. 3a-b). An alignment of strike-slip events indicates the presence of a previously unknown fault favorably oriented with respect to the stress field (Fig. 3c).

We thank Martin Schoenball for discussions providing and for ternary plot code.

2a) Injection period 1

b) Injection period 2

d) B-value decreases with respect to injection periods with smaller volumes (Fig. 4f).

e) Stress field orientation changes by approximately 20° (Fig. 2).

3 Temporal Changes in Seismological Parameters

During periods of large injection volumes:
- The total number of seismic events with M > 1.3 increases (Fig. 4a).
- The percentage of normal faulting events decreases by 20% accompanied by strike-slip and thrust faulting increases (Fig. 4b).
- The maximum magnitude of the events increases, but also after 5 months (Fig. 4c).
- The b-value decreases with respect to injection periods with smaller volumes (Fig. 4f).
- Stress field orientation changes by approximately 20° (Fig. 2).

3a) Injection rates and number of seismic events. a) Injection rates and number of seismic events. b) Absolute and relative number of relocated events from each faulting regime. c) Cumulative seismic moment and monthly maximum magnitude. d) b-values. e) Stress shape ratio. f) Average hypocentral average distances of the seismicity with respect to injection well and stress shape ratio.

FIGURE 1: Spatial distribution of seismicity at the NW The Geysers geothermal field

FIGURE 2: Example of Stress field orientation change during a period of large injection volumes (cf. Fig. 4, injection period-1)

3b) Cumulative seismic moment and monthly maximum magnitude. a) Cumulative seismic moment. b) Monthly maximum magnitude.

4 Mechanisms of Induced Seismicity

- The results suggest that different mechanisms inducing seismicity could be operating at different scales depending on the fluid injection volume.
- Thermoelastic effects govern the occurrence of induced seismicity at The Geysers given the high temperature contrast between injected water and reservoir. Thermoelastic stresses (~26 MPa at the wellbore wall) might affect primarily the nearby area of the injection well (Fig. 5). The cooling of reservoir rock results in decreasing the horizontal stresses at reservoir depth, promoting shear failure (Fig. 6b).
- Poroelastic effects are relevant during periods of large injection volumes, when the pore pressure increase may induce seismicity at larger distances from the injection well (Fig. 5). Pore pressure change during large injection periods is ~1MPa. Given the distribution of stresses relative to the position from the injection well, the three principal stresses are modified differently (Fig. 4f).

4a) Cumulative seismic moment and monthly maximum magnitude.

b) Temperature and Cold Water

c) Decrease in Dc

d) Increase in Dc

5 Summary and Conclusions

- We investigate spatio-temporal patterns, kinematics and source properties of induced seismicity from a selected cluster at The Geysers geothermal field.
- During periods of large injection volumes, a change in the stress field orientation was observed. Additionally, small changes are observed in the spatial distribution of hypocenters, faulting mechanisms, maximum earthquake magnitude, b-values, average distance from the injection well and stress shape ratio.
- The observed changes in seismic parameters suggest that a different mechanism is governing the seismicity during high injection periods. It is here proposed that at The Geysers geothermal field, thermoelastic stresses may be the dominant mechanism while poro-elastic effects are important during the periods of high fluid injection in the reservoir.

FIGURE 3: Conceptual sketch showing the thermo-elastic and poro-elastic effects around the injection well.

FIGURE 4: Cumulative seismic moment and monthly maximum magnitude.

a) Cumulative seismic moment.

b) Monthly maximum magnitude.

c) Decrease in Dc.

d) Increase in Dc.

5a) Summary of mechanisms of IS on the reservoir stresses.

a) Initial normal faulting stress regime assumed.

b) Thermo-elastic effect.

Greyscale marks the initial state of stress c) Poro-elastic effect.

References

The acknowledgements are provided at the end of the document.