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INTRODUCTION

• Induced seismicity greater than the 

expected 

• Post-injection seismicity still not 

completely understood
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Motivation

Soultz-sous-Forêts  (Majer et al., 2007)
Basel (Häring et al., 2008)



Modeling of induced seismicity
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INTRODUCTION

heterogeneous host rock 

fracture network

Realistic  but the 

complexity hinders the 

conceptual understanding 

of the processes

Pressure variations (HM coupling)

Temperature variations (THM coupling)

Fracture failure and seismic shear slip

Permeability increase (elastic + dilation)

Chemical reactions



Fluid pressure

Temperature

Seismic slip movement
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Identify how each process affect the stress field and the 

reservoir stability

during and after injection

INTRODUCTION
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METHODOLOGY

Hydraulic and thermal  effects
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9 days injection and 10 days of recovery

P=40 MPa
T=150° C 

Fault zone matrix

k(m2) 10-12 10-17

E(MPa) 100 30000

ν 0.3 0.3

𝜙 0.1 0.01

Numerical simulation with CODEBRIGHT (Olivella et al, 1994; 1996)



After 9d of injection

Hydraulic effects (HM)
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RESULTS
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Thermal effects (TM)
(for temperature distribution due to advection+conduction)
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RESULTS
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METHODOLOGY
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Dtxy (MPa) Dsy (MPa) Stress field rotation (º)

RESULTS

Shear slip movement effects
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Superposition of effects
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RESULTS

CFS > 0 means failure

CFS increase (DCFS>0) correspond to stability 

worsening

0tCFS CFS CFSD  

( ' )nCFS ct  s   

Mohr-Coulomb failure criterion

t

s'

X- orientation

Y-orientation



DCFS for orientation x DCFS  for orientation y
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Superposition of effects: Stability variation 
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RESULTS
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RESULTS

CFS for orientation x CFS for orientation y



Conclusions

 Hydraulic effects produce seismicity in the vicinity of the well and

along the main fault zone, but also stabilize fractures placed far

away from the injection point, thus delaying their failure;

 Hydraulic effects rapidly disappear after the injection stop, but at

early times they may induce seismicity in previously stabilized

fractures;

 Thermal effects remain for long times after injection stop and reduce

stability along not optimally oriented fractures, but they are localized

to the area close to the injection well;

 Slip stress transfer may sensibly rotate the stress tensor;

 The superposition of these effects may induce seismicity along not

optimally oriented fractures . 14
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