Three (very) short stories utilizing the toolkit from observing ordinary earthquakes for the study of induced seismicity

Emily E. Brodsky University of California, Santa Cruz

Part I:Dynamic Triggering of Earthquakes

The distribution of triggering thresholds

Part II:

Aftershocks and Induced Seismicity

Brodsky & Lajoie, Science, 2013

15

Raw Earthquake & Operational Data

Epidemic-Type Aftershock Sequence (ETAS) Model

Ogata, 1988 ++

Using ETAS to Determine the Background Rate

Earthquake Rate at Time $t_E = M + a_{i;t_i < t_E} \frac{K_E 10^{a(M_i - M_c)}}{(t_E - t_i + c)^p}$ Where:

Where:

Observed

Rate

Earthquake

- µ=background rate,
- Number of aftershocks = $K_F 10$ (Mi-Mc) Given completeness magnitude M_c & mainshock magnitude M_i
- Aftershock rate from mainshock at time $t_i \sim 1/(t_F t_i + c)^p$

Fit K_E , p, μ and track μ

Background (non-aftershock) rate and operations

Brodsky & Lajoie, Science, 2013

Brodsky & Lajoie, Science, 2013

Part III: Dynamic Permeability Enhancement

Permeability Increases with Shaking

Laboratory Experiment

Elkhoury et al., *J. Geophys. Res.*, 2011 Candela et al., *Earth & Planet. Sci. Let*, 2014 Candela et al., *J. Geophys. Res.*, 2015

Permeability Increases Generated in the Lab

Candela et al., J. Geophys. Res., 2015

Imagery of throat clearing

Candela et al., EPSL, 2014.

Conclusions

• From dynamic triggering:

 The distinction between "induced" and "triggered" is a continuum

- From aftershock statistical models:
 - Anthropogenic earthquakes can have aftershocks
- From dynamic permeability:
 - Earthquakes can generate feedback via seismic waves that affect reservoir properties

Candela et al., EPSL, submitted.

M_w 7.9 May 12, 2008 Wenchuan Earthquake

Recovery to Original Permeability

Candela et al., EPSL, submitted.

Permeability in the Fault Zone: Wenchuan Fault Zone Scientific Drilling

Tidal Response

Permeability and Storage in the Wenchuan Fault

2013

Temporal Changes

 Permeability changes indicate fast, episodic healing in

 Xue et al.,

 Science,

 the fault following a major earthquake

 2013

Conclusions

- Permeability varies over time
 - Seismic waves can increase permeability by factors up to 3-4
 - In some cases, permeability change correlated to amplitude of dynamic strain
 - Reproduced in the lab
 - Possibly due to opening (unclogging) of fractures
 - Over years, permeability can decrease by similar amounts
 - May be the fingerprint of fault zone healing

• IMPLICATION FOR HYDROGEOLOGY:

Permeability is a dynamically controlled and its steady-state value is governed by the competition of processes.