

THE UNIVERSITY OF TEXAS AT AUSTIN Petroleum and Geosystems Engineering

PREDICTIVE MODELING OF INDUCED SEISMICITY: NUMERICAL APPROACHES, APPLICATIONS, AND CHALLENGES

Mark McClure Assistant Professor Petroleum and Geosystems Engineering The University of Texas at Austin

Overview of this talk

- Discussion of different modeling approaches
- Opportunities and challenges
- □ My work with CFRAC
 - Coupling fluid flow with rate/state friction earthquake simulation
 - Post-injection seismicity and a strategy for minimization
- Other investigators using and extending CFRAC

Forward simulations of earthquake rupture

Heuristics for predicting earthquake occurrence

Vörös and Baisch (2009)

Serianex report on induced seismicity hazard at Basel

Rate and state friction in earthquake modeling

Example of rate/state earthquake simulation

Treatments of friction in earthquake modeling

*Constant stress drop can be imposed instead of a drop in friction.

Static/dynamic (Baisch et al., 2010)

0.5

0.4

0.3

0.2

0.1

0

1

Injection rate (kg/s)

Role of heterogeneity

- Heterogeneity exists in:
 - Fault shape/geometry
 - Elastic properties
 - Frictional properties
- Numerical models include less heterogeneity than reality
- Stochastic realizations can help handle uncertainty and heterogeneity

Opportunities and challenges

Generic simulations for sensitivity analysis

- Develop physical insight
- Impact of variables and uncertainties
- Prompt further investigation
- Investigate processes

Site-specific for hazard analysis

- Site specific modeling will always be fraught with uncertainty from physics and from uncertain model inputs
- For example: how can we relate calculated stress changes to observed seismicity?
- Integrate physics and heterogeneity and uncertainty in a balanced way

CFRAC (Complex Fracturing ReseArch Code)

28

20

- Full coupling of fluid flow with deformation in discrete fractures.
- Hmmvp (Bradley, 2012) key for efficiency.

 $\frac{\partial(\rho\phi)}{\partial t} = \nabla \cdot \left(\frac{k\rho}{\prime\prime}\nabla P\right)$ Ц

 $|\tau - \eta v| \leq \mu(\sigma_n - P)$

 $\mu = f_0 + a \log(v / v_0)$ $+b\log(v_0\theta/d_c)$

 $\frac{d\theta}{dt} = 1 - \frac{\nu\theta}{D_c}$

Mass balance

Frictional equilibrium

Rate and state friction

"Aging" law

$$e = \frac{e_0}{1 + \frac{9(\sigma_n - P)}{\sigma_n}} + D * \tan(\frac{\phi_{dil}}{1 + \frac{9(\sigma_n - P)}{\sigma_n}})$$

Willis-Richards et al. (1996)

$T = \frac{e^3}{12}$

Witherspoon et al. (1980)

Injection into a single fault Similar to some EGS projects (Soultz, Basel, Cooper Basin...)

Injection into a single fault

McClure and Horne (2011)

Example of rate/state rupture simulation

"Crack-like" shear stimulation

Sliding and shear stimulation occur ahead of the fluid pressure front.

McClure (2012)

Cooper Basin example of episodic "crack-like" shear stimulation

Asanuma et al. (2005)

Post-injection seismicity

Flowback after injection

Producing fluid back after injection decreases post-injection seismicity

Gradually tapering injection pressure

Time Elapsed

Gradually tapering injection pressure

3D simulations with CFRAC

McClure et al. (2015)

Jack Norbeck and Roland Horne

Norbeck and Horne have been adding thermal and poroelastic stresses into CFRAC and investigating their effects.

Valentin Gischig

Valentin Gischig has been using CFRAC to look at the relationship between stress state and aseismic/seismic slip.

Conclusions

- Simulations with more realistic physics are very useful for generic investigation of processes
- For site specific assessment, we need to move towards integrating physical models and statistical approaches in a balanced way
- CFRAC simulations investigated post-injection seismicity, "crack-like shear stimulation," and mitigation strategies
- Research with CFRAC is ongoing (including other researchers), and it continues to gain capability over time

Works cited

- Asanuma, H., N. Soma, H. Kaieda et al. 2005. Microseismic monitoring of hydraulic stimulation at the Australian HDR project in Cooper Basin. Paper presented at the World Geothermal Congress, Antalya, Turkey.
- Baisch, Stefan, Robert Vörös, Elmar Rothert et al. 2010. A numerical model for fluid injection induced seismicity at Soultz-sous-Forêts. International Journal of Rock Mechanics and Mining Sciences 47 (3): 405-413, doi: 10.1016/j.ijrmms.2009.10.001.
- Bradley, Andrew M. 2011. H-matrix and block error tolerances. arXiv:1110.2807, source code available at https://pangea.stanford.edu/research/CDFM/software/index.html, paper available at http://arxiv.org/abs/1110.2807.
- Bruel, Dominique. 2007. Using the migration of the induced seismicity as a constraint for fractured Hot Dry Rock reservoir modelling. International Journal of Rock Mechanics and Mining Sciences 44 (8): 1106-1117, doi: 10.1016/j.ijrmms.2007.07.001.
- Cappa, Frédéric, Jonny Rutqvist. 2011. Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophysical Research Letters 38 (17), doi: 10.1029/2011GL048487.
- Duru, Kenneth, Eric M. Dunham. 2015. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids. (submitted).
- Gischig, Valentin. 2015. The maximum possible earthquake induced by fluid injection into deep reservoirs implications from earthquake source physics models. (in preparation).
- Kilgore, B. D., M. L. Blanpied, J. H. Dieterich. 1993. Velocity dependent friction of granite over a wide range of conditions. Geophysical Research Letters 20 (10): 903-906, doi: 10.1029/93GL00368.
- McClure, M. W. 2012. Modeling and characterization of hydraulic stimulation and induced seismicity in geothermal and shale gas reservoirs. PhD Thesis, Stanford University, Stanford, California.
- McClure, Mark W., Mohsen Babazadeh, Sogo Shiozawa et al. 2015. Fully coupled hydromechanical simulation of hydraulic fracturing in three-dimensional discrete fracture networks. Paper SPE 170956 presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX.
- McClure, M. W., Roland N. Horne. 2011. Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model. Geophysics 76 (6): WC181-WC198, doi: 10.1190/geo2011-0064.1.
- Norbeck, Jack, Hai Huang, Robert Podgorney et al. 2014. An integrated discrete fracture network model for description of dynamic behavior in fractured reservoirs. Paper presented at the Thirty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford, CA.
- Rothert, Elmar, Serge A. Shapiro. 2007. Statistics of fracture strength and fluid-induced microseismicity. Journal of Geophysical Research 112: B04309, doi: 10.1029/2005JB003959.
- Directory Vörös, R., S. Baisch. 2009. Deep heat mining Basel -- seismic risk analysis: AP 4000, triggered seismicity, Q-Con Report.
- Willis-Richards, J., K. Watanabe, H. Takahashi. 1996. Progress toward a stochastic rock mechanics model of engineered geothermal systems. Journal of Geophysical Research 101 (B8): 17481-17496, doi: 10.1029/96JB00882.
- Witherspoon, P. A., J. S. Y. Wang, K. Iwai et al. 1980. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research 16 (6): 1016-1024, doi: 10.1029/WR016i006p01016.