

Schweizerischer Erdbebendienst Service Sismologique Suisse Servizio Sismico Svizzero Swiss Seismological Service

Scaling of seismic and aseismic moments of natural and induced earthquakes

Passarelli, L.¹, Antonio Pio Rinaldi², Louis De Barros³, Philippe Danré⁴, Frédéric Cappa³, Paul Selvadurai², Stefan Wiemer²

- 1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Italy
- 2 Swiss Seismological Service SED, ETH Zurich
- 3 Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, IRD, Géoazur, Sophia Antipolis, France
- 4 CNRS, ITES, Université de Strasbourg

- Database of slow slip transients +
 triggered seismicity:
 - Geodetic moments
 - Seismic moments of triggered seismicity
 - Duration
 - Source dimensions

 Source parameters of triggered seismicity only during slow slip transient

Moseis - Mogeod

 $M_0^{seis} - M_0^{geod}$

Aseismic and seismic moment Magnitude (M_w) release do scale during slow slip 1021 transients α=0.3 Subduction zone 10^{20} - $M_0^{geod} = \beta (M_0^{seis})^{\alpha}$ and >10km depth 10¹⁹ Magnitude (M_w) $M_0^{geod} = M_0^{seis} + M_0^{aseis}$ 👍 α=0.7 (mag) 10¹⁸ ⊂ ₩ 10¹⁷ , Δ TG-SSE Guerrero **TG-SSE** Cascadia \bigcirc TG-SSE Nankai TG–SSE Guerrero $10^{16} =$ No subduction zone TG-SSE Cascadia SG-SSE Volcano and <10km depth TG-SSE Nankai SG-SSE Strike-Slip △ SG–SSE Volcano Depth (km) SG-SSE Strike-Slip SG-SSE Thrust 10^{15} = \Diamond 50 45 40 35 30 25 20 15 10 5 ♦ SG–SSE Thrust SG-SSE Normal SG-SSE Normal 10^{10} 10^{11} 10^{12} 10^{13} 10^{14} 10^{15} 10^{16} 10^{17} 10^{18} 10^{19} 10^{20} 10^{21} Passarelli et al., 2021 Sci. Adv. M₀^{seis} (Nm)

24/04/2025

$$M_0^{geod} = \beta (M_0^{seis})^{\alpha}$$

Added new data:

- Natural SSEs
- In-situ field scale injection experiments
- Lab experiments
- Performed simulation

24/04/2025

Aseismic and Seismic slip: From nature to lab

Geodetic vs Seismic Moment scaling:

$$M_0^{geod} = \beta (M_0^{seis})^{\alpha}$$

- Scaling -> The larger M_0^{geod} the larger the proportion of M_0^{seis}
- Scaling arises by a combination of:
- Confining stress increase with depth - > larger seismic moment release for deeper events
- Geometrical finiteness of the fault activated

6

Results

Schatzalp 4th Induced Seismicity Workshop 18 - 21 March 2025

Geodetic vs Seismic Moment scaling

$$M_0^{geod} = \beta (M_0^{seis})^{\alpha}$$

= if and only if $M_0^{seis} \exists$

Eq. holds only for seismogenic slow slip transients

$$M_0^{geod} = M_0^{seis} + M_0^{aseis}$$

$$M_0^{geod} = \beta M_0^{seis}$$
 if $\alpha = 1$

Productivity vs Seismic Moment scaling:

$Depth \sim P$

The deeper SSE the more seismic productive they are

 $M_0^{seis} \leq M_0^{aseis}$

Spearman Correlation ~ 0.85

Aseismic and Seismic slip: From nature to lab

Stress drop

 $\tau_{s,g} = \frac{7}{16} \frac{M_0^{s,g}}{L_{geod}^3}$

 $\tau \sim P$

Simulation: Aseismic and Seismic slip

Poroelastic model (Wang and Kümpel, 2003)

Aseismic Source (SSE) w/ triangular Source Time Function and Gaussian slip...

...and calculate poro-elastic stresses in a homogeneous half-space

Simulation: Aseismic and Seismic slip

Aseismic and Seismic slip: From nature to lab + Simulations

24/04/2025

Schatzalp 4th Induced Seismicity Workshop 18 - 21 March 2025

Physical mechanisms: fault pressurization (unclamping)

Pressure <u>unclamps</u> the fault and produces aseismic slip

High-pressure induces <u>aseismic slip</u> to expand (around the injection point)

Propagation of the <u>aseismic rupture triggers</u> <u>seismicity</u> due to shear stress increase at the rupture edges

Conclusions

- Seismic to aseismic moment scaling over 14-18 orders of magnitude (but observational gap??)
- If M_a>>M_s scaling holds over large range of orders of magnitude
- Geometrical finiteness of the fault constrains aseismic and seismic moment release
- Fluid-induced pressurization of fault is a viable mechanisms to trigger slow and fast slip

Thank you

START OF BACK UP SLIDES:

please contact me at luigi.gov.it for further explanation since slides are very minimalistic

Slow Slip Transients

aka Slow Slip Events (SSEs)

Slow slip transients are rupture that do not excite seismic wave and are often "associated" w/ "seismic" events:

Non-volcanic Tremor (many tiny earthquakes)

and/or

Aguiar et al., 2009

Swarms of "ordinary" (larger) earthquakes

GEOFON TNTI stazione

Tremor-Genic Slow Slip Events TG-SSEs

Swarm-Genic Slow Slip Events SG-SSEs

Phemenology

Tremor or LFEs counts increases during SSEs

Aguiar et al., 2009

Tremor or LFEs amplitudes (energy) increase during SSEs

24/04/2025

TG-SSEs

Tremor or LFEs moment (slip) rate correlates with moment (slip) rate of SSEs

Frank and Brodsky 2019

Fast and Slow Slip

- Physical processes
- ⇒ Fault structures where slow and aseismic and fast and seismic slip can be accommodated at the same time
- \Rightarrow Conceptual model:

Brittle asperities (darker gray) embedded within conditionally stable (light gray) and stable sliding regions (pinkish)

Mechanical condition:

Heterogeneous <u>frictional</u> properties

Pronounced fault roughness

High pore pressure condition (low effective normal stress)

24/04/2025

Physical mechanisms: fault pressurization (unclamping)

Pressure <u>unclamps</u> the fault and produces aseismic slip

High-pressure induces <u>aseismic slip</u> to expand (around the injection point)

Propagation of the <u>aseismic rupture triggers</u> <u>seismicity</u> due to shear stress increase at the rupture edges

Physical explanation

24/04/2025

TG-SSEs

Tremor or LFEs moment (slip) rate correlates with moment (slip) rate of SSEs

Frank and Brodsky 2019

SG-SSEs

SG-SSEs in 2007 underneath Boso peninsula, Japan

24/04/2025

24/04/2025

30

Phemenology

Passarelli et al., 2021 Sci. Adv.

24/04/2025

24/04/2025

Schatzalp 4th Induced Seismicity Workshop 18 - 21 March 2025

24/04/2025

Schatzalp 4th Induced Seismicity Workshop 18 - 21 March 2025

Earthquake productivity P - Depth

Seismic Moment

Geodetic Moment

 $M_0^{\text{seis,geod}} - V_{rpt,mig}$

24/04/2025

41

Recap

Deeper
$$M_0^{geod} = \beta (M_0^{seis})^{0.3}$$
 lower P
Shallower $M_0^{geod} = \beta (M_0^{seis})^{0.7}$ higher P

Earthquake productivity *P* scale consistently with *depth*

$$P = \frac{M_0^{seis}}{M_0^{geod}} \propto Depth$$

Data are inconclusive for $M_0^{geod} - T_G$ scaling

$$M_0^{geod} - T^3 \text{ or } M_0^{geod} - T ??$$

No M_0^{seis} - T_s (duration of seismicity) scaling

$$M_0^{seis} \approx T_S^n$$

No $v_{mig} - M_0^{seis}$ scaling

$$v_{mig} \not\approx M_0^{sets}$$

Recap

Our data compatible w/ the $v_{rpt} - M_0^{geod}$ $v_{rpt} \propto (M_0^{geod})^{-0.5}$ scaling

Earthquake productivity P scale consistently w/ v_{rpt}

$$v_{rpt} \propto P^{-\gamma}$$

Physical explanation

TG-SSEs:

- 10 SSEs at Cascadia subduction zone (literature
- 8 SSEs at Guerrero subduction zone (*literature*)
- 174 SSEs at Nankai subduction zone (database)

SG-SSEs:

- 3 SSEs at volcanoes (Kilauea, Mt Etna and Miya 2014-2013-
- 2 Strike-slip fault (San Andreas and Salton Throi 2012
- 3 Normal fault (Pollino, Alto Tiberina and L'Aquilé 2009)
- 1 Thrust (Wood Island Washington State) (*literat*
- 14 Thrust in subduction zone (Ecuador, Chile, Ja

Database dominated by events in subduction zone

Statistical test

24/04/2025

Statistical test

Schatzalp 4th Induced Seismicity Workshop 18 - 21

Physical explanation

Aseismic and seismic scaling

Physical explanation

