Rupture Cycles on a Multiscale Rough Fault

Thibault Candela, Hsiao-Fan Lin, Jean Paul Ampuero

What is the effect of fault roughness on seismicity?

Others looked at it already... but effect of fault roughness was masked by other modelling ingredients...

Our approach

roughness[m]

Our approach

1. Self-affine fractal fault surface (with amplitude range matching natural observations)

2. Elasto-static stress transfer (boundary element method)

3. Friction drops instantaneously from static to dynamic, then heals immediately after slip stops

From smooth to rough fault

Two types of loading

- 1. Tectonic-loading: back-slip approach with uniform shear and normal stress as starting point
- 2. Injection-induced loading: project background stress tensor on each triangle and then start to inject

Two types of loading

- 1. Tectonic-loading: back-slip approach with uniform shear and normal stress as starting point
- 2. Injection-induced loading: project background stress tensor on each triangle and then start to inject

Two types of loading

- 1. Tectonic-loading: back-slip approach with uniform shear and normal stress as starting point
- 2. Injection-induced loading: project background stress tensor on each triangle and then start to inject

$$P(t) = \frac{v\eta}{4\pi kh} E_1\left(\frac{r^2}{4D_0t}\right) + p_0$$

First: tectonic loading (back-slip approach)

Smoother faults operate at a lower shear/normal stress ratio (effective friction) Rough fault: GR-type distribution / arrested-type rupture events Smooth fault: Bimodal-type distribution / runaway-type rupture events

Second: injection-induced loading

TNO innovation for life

Second: injection-induced loading

Faster seismicity migration front along rough fault / higher apparent diffusivity along rough fault

Look at Hsiao-Fan Lin's poster !

INO innovation for life

Conclusions

We presented a simple rupture model solely focusing on the effect of fault rougness with:

- Amplitude range matching natural observations
- No other heterogeneities

(1) Tectonic loading: a broad range of Magnitude-Frequency Distribution. Rough : GR-type Smooth : bimodal-type

(2) Injection-induced loading: a broad range of seismicity migration speed. Rough: fast Smooth: slow

Questions

What do you want to know more? Food? ... Yes me too I am starving \odot

THANK YOU

"Potency" of the stress transfer

Back-front

