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Challenges of monitoring induced microseism icity

Innovation for:
De-Risking Enhanced
Geothermal Energy Projects

190000] bk . ® High eventrate (up to 100 /minute)

190030 " ‘ ® Overlapping phases

woroo g ® Stronglynoise-contaminated events

o : ’ ® High sampling rates and integration ofdifferent sensors
1::2:: — J : ® Large datasets (e.g., DAS)

19:03:30

19:04:00

19:04:30

5 minutes data

0 2 4 6

Time (s)
Possible solutions?
® Machine Learning approaches
® Digitaltwins
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D E E MALMI w orkflow .

Innovation for:
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https://github.com/speedshi/MAILMI

Scan event probability continuously to look for locatable events
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 Malmi uses ML to generate phase probabilities and then use the  phase probabilities for stacking and migration. Among the benefits of this tool are that 
No need to do phase association
Tackle overlapping events well
Robust to outliers at single station
It requires Fewer parameters to tune
Combine ML with physical-based model


https://github.com/speedshi/MALMI

Earthquake Location using waveform backprojection and stacking

Innovation for: I
De-Risking Enhanced
Geothermal Energy Projects
Pros:
Backprojection and Stacking AV Station ® No phase picking (automated —use ML phase
! é probability directly as characteristic function
Z % forbackprojection and stacking);
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® No phase association (great for short inter-
eventtime and overlapping events!);
LSRR ® increase SNR (from stacking);
m Searching .ohr-igin time Cons:
e Computationally expensive
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The MALMI workflow is based on an earthquake location approach using waveform backprojection and stacking. The basic idea of this approach is fairly simple. It simply stacks the seismic waveforms along the pre-calculated travletime trajectories at each sub-surface imaging points and potential origin times. The corresponding stacking maxima reveals the earthquake location and origin time. 
Because the process is very straightforward and simple, it brings a few pros, for example this approach does not need phase picking and association because events are automatically detected and located by backprojection process. This feature makes it very suitable for processing overlapping events. Thus it is particularly suitable for microseismic monitoring, as a lot of events can occur in a short time period thus causing a lot of overlapping phase arrivals which can be difficult to associate. Since stacking is used to increase SNR, thus this approach have potential to detect and locate small events. The biggest drawback of this approach is that it is very computationally expensive since we have to deal with a lot of imaging points and process continuous data. Secondly, for better performance, we usually need to find a good characteristic function for imaging. So what is a characteristic function and why we need it?

So in the end, I compiled this MALMI workflow to process continuous data and get an earthquake catalog directly from it. And the core part is to use different ML models to generate continuous phase probabilities for stacking and event location. So now we have a workflow, are we ready to apply it for FORGE microseismic monitoring?     Not quite yet.



 


Scale Issue and Out-of-Distribution (ODD) datasets

Innovation for:
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Woollam et al., 2022 Pre-trained models:
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The issue is: there is a systematic scale difference between the model we use and the data want to apply. At first, we do not have any labelled dataset for re-training or transfer learning for FORGE datasets. So we have no choice but to use pre-trained models. Most available models are trained on tectonic earthquakes with magnitudes spanning from 0 - 6, and depending on the distances the event waveforms last around a few seconds to tens of seconds. These training data are mostly recorded by broadband stations at 100 or 200 Hz. But the data at FORGE is so different, we target at microseismic events with magnitude down to -3 and data recorded at 4000 hz. Events are of much higher frequencies and usually last less than 0.5 seconds. So how do we apply the pre-trained models to this out-of-distribution data set?


 


Rescale data foraugmenting ML modelperformance

Innovation for:
De-Risking Enhanced
Geothermal Energy Projects

o] 4 — e Rescaling scheme
: N e Sclf-similarity oflarge and small EQs;
; e System atically stretch or squeeze waveforms to match
i the training data;

N - S— | e Scale-independent property for m ost ML architectures;

Time (s)
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This figure shows how rescaling works. The core idea is to manipulate the input waveforms by resampling. For example, for 100 Hz data, if we resample to 200 Hz, since ML model takes a fixed number of samples as inputs, from example 3000 points here, the input waveforms will look like been stretched twice longer. This changing of scale can affect model performance dramatically, as we can see without rescaling model fails to predict, but as rescale twice longer, the model performs perfectly at capturing the phases. The rescaling will affet two aspects: one is P-to-S samples which corresponds to distance; the other is samples per cycle which relevant to frequency as percep by model. There are two directions of rescaling. Upscaling: means stretch the waveforms and provide a zoom-in effect, this is achieved by upsampling; Downscaling: which means squeeze the waveforms and provide a zoom-out effect and is achieved by downsampling. So how do we decide when to use upscaling and when to use downscaling?


 The third feature/property of rescaling scheme, it utilize the fact that most ML models directly work on time serial samples, and ignore the actual frequency and time information.



D E E Rescale data foraugmenting ML modelperformance

Innovation for:
De-Risking Enhanced

Geothermal Energy Projects W h en to Up -SCa le .

e Smallevents;

e Near field recordings;

When to Down-scale:

® Large events;

® Remote events;

e Relatively far field
recordings (com pared
to training sets)
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I perform systematic analysis and find out that upscaling should be used for smaller events or near field recordings where the P-to-S time is too short. The movie highlights how upscaling works and affects the model performance. Below is a few snapshots of how the waveforms look like in time domain after upscaling. The shape keeps consistent with original data, but since we have more samples, the input data to the model is actually enlarged. 
If we upscale too much, the model will lose the global sense of the whole wave trains, thus leads to poor model performance.

On the other side, downscaling is needed for large events or remote events that the wave train is too long and can not fit into a single ML prediction window as illustrated in the plot. The movie and the snapshots reveal how downscaling affects the input waveforms to the model and its performance. We can see that, at first, the scale is too large and P and S-phases can not even appear in the same window, but as we downscale further, we zoom-out and start to see the whole wave trains and the model starts to work.










D E E Verify cross-scale monitoring ability
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We tested the rescaling scheme across different scales, from large tectonic scale such as megathrust to labquake scale, and find out that rescaling is actually a very effective way to apply pre-trained models to out-of-distribution scales. We believe the underlying mechanism of why this works is the self-similarity of large and small earthquakes.


 


Quakephase:a unified platform for ML modelaugmentation

Innovation for:

2:;>I§tifekrirrr]1% IEI?;] :rngcyegrojects I
| uakephase Shietal 2024, JGR-Machine Learning and
| o “ y Computation
(S8 i toshortorentandngyourpeing mode https://github.com /speedshi/quakephase
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I developed a unified platform called quakephase, which integrates rescaling along with some other techniques, for example model aggregation and ensemble, to enhance the model performance on out-of-distribution datasets. Now finally we are ready to apply the workflow to FORGE. So we will use quakephase to generate continuous phase probabilities and use MALMI for event detection and location.

 

https://github.com/speedshi/quakephase

Utah Frontier Observatory for Research in Geotherm al Energy (FORGE)
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(FORGE) in Utah (USA), an international field underground laboratory that provide  us with a perfect controlled environment in a low-risk area (with no physical and social vulnerability) to develop, and optimize the technologies required the monitoring of EGS reservoirs. FORGE points of strengths are the presence of High temperatures (> 175 °C), Deep injection/monitoring wells, as well as a high resolution seismic network for reservoir and hazard monitoring  which include downhole and surface arrays, DAS, large-N nodal arrays
High temperatures 
Multi-method seismic network for reservoir and hazard monitoring
Low risk area



DEE 16A-32 April 2022 stim ulation

Innovation for:

De-Riaking Enhanced * Demonstrate reservoir growth

Geothermal Energy Projects

* Use the seismic imaging to guide location ofsecond well
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Rescaling rate: 60
Frequency:100-1800
Model: EQT stead

21.03.2025

MALMI & Quakephase applied to FORGE

DEEP catalog
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To check how the model and rescaling works, here is the P and S phase picking results in this 5 minutes. For overlapping arrivals, model can still recognize the phases well
 


D E E High-resolution DL catalog
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38.5025°

® Two-step clustering:Density-Based Spatial Clustering + Gaussian Mixture Models;
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Applying the workflow to continuous data of a few days during and after the stimulation, we automatically detect and locate over 34K events. Their spatial distribution is highlighted in the movie. I applied spatial clustering to the event cloud and identified 10 events clusters. Each of them would correspond to one fracture plan induced by injection, we can find the strike and dip angles of these planes by PCA analysis. We are still trying to understand the fauctureing dynamics during injection.


clustering only applies to the quality A events

General trend of seismicity cloud is NNE-SSW, parallel to the orientation of Shmax (N25E) with two wings–like lobes at the edge of the cloud (slightly shifted location with respect to GES catalog)



Fracturing mechanisms

Innovation for:
De-Risking Enhanced
Geothermal Energy Projects

® PCAanalysis on DLcatalog reveals
strike and dip ofthe fracture planes;

Independent analysis using GES
catalog shows that a penny-shaped
crack modelis the best modelduring
injection phase (Lanza et al.,in prep)

Seismicity cloud is likely the result of
fracturing and stress change due to the
opening and growing ofhydro-
fractures
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Applying the workflow to continuous data of a few days during and after the stimulation, we automatically detect and locate over 34K events. Their spatial distribution is highlighted in the movie. I applied spatial clustering to the event cloud and identified 10 events clusters. Each of them would correspond to one fracture plan induced by injection, we can find the strike and dip angles of these planes by PCA analysis. We are still trying to understand the fauctureing dynamics during injection.






2024 FORGE on-site (real-time) monitoring
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|
2 ~435K events
s

maxrate:87/m in

maxmag: 106
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During the monitoring time of around two weeks, we are able to automatically detect and locate over 400K events using the workflow. I am satisfied with the detection rate, but there are still some defects.

 we are currently looking into quality control of the catalog and calibration of the locations, given a less favorable well configuration with respect to the 2022 stimualtion


Towards Digital Twins for wave propagation in EGS

| tion for: . . . . .
De-Risking Enhanced I How do we optimize,test,benchmark,and validate monitoring workflows?

Geothermal Energy Projects

Create an end-to-end simulation environment where ‘ground truth’is known (e.g. FORGE site)

l.Incorporating geology

Sediment
@ velocities:
Zhang & Pankow, 2021

* Sediment,bedrock velocities
(Zhang &Pankow 2021)

Bedrock interface
from VSP

* Interface from seismic reflection
I. data (Wannamakeret al.2020)

Scattering bedrock
@ velocities: GES model

. e von-Karm an random
2w perturbations

Absorbing
boundaries
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Towards Digital Twins for wave propagation in EGS
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How do we optimize,test,benchmark,and validate monitoring workflows?

Create an end-to-end simulation environment where ‘ground truth’is known (e.g. FORGE site)

l.Incorporating geology

Sediment
@ velocities:
Zhang & Pankow, 2021

Bedrock interface

from VSP
. 3.6e+03
Scattering bedrock
@ velocities: GES model 3400
— 3200
— 3000
— 2800
— 2600
— 2400
L 2200
Absorbing l
boundaries 20e+03
oz
1\ «

21.03.2025
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Site-specific noise for UT.58G1
using statistical covariance (e.g. Nooshiri et al., 2022)
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* Sampled site noise (Nooshiri
et al.2022)

* Estimate noise mean and
covariance during pre-
stimulation phase

 Later superimposed on
continuous time series



Towards Digital Twins for wave propagation in EGS

Innovation for:

De-Risking Enhanced How do we optimize,test,benchmark,and validate monitoring workflows?

Geothermal Energy Projects

Create an end-to-end simulation environment where ‘ground truth’is known (e.g. FORGE site)

l.Incorporating geology 2. Site-specific noise 3.Numerical Solution

Site-specific noise for UT.58G1 Snapshot at t = 0.050 s Snapshot att = 0.115 s
107 using statistical covariance (e.g. Nooshiri et al., 2022) 750 750
Sediment
@ velocities: 10-° 500 500
Zhang & Pankow, 2021 §§
2
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Presenter Notes
Presentation Notes
target time series have 1000s to 10000s events
use source-receiver reciprocity
simulations using spectral-element solver Salvus (Afanasiev et al., 2019) at Swiss National Supercomputing Center



Realistic synthetic continuous waveforms
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Presenter Notes
Presentation Notes

Understand different impacts/ noise. Siute, frequency cotent, station configuration 


Comparison of observed and synthetic Fourier amplitude spectra Simulations were performed in a homogeneous-bedrock model with velocities calibrated by check shots 

The synthetic catalogue was generated in several steps. 
First, the timing of synthetic events was scaled from the observed temporal distribution in the input catalogue.
Second, the location of synthetic events was modeled to follow the spatial growth of the seismicity cloud observed in the input catalogue, introducing a 10 ft error to add variability. 
Third, the size of the events was determined by extending the frequency-magnitude distribution (FMD) to smaller magnitudes, creating a complete catalogue down to Mc target= −2.5 and randomly sampling from that FMD
Finally, the moment tensor was assigned as a six-component pure double couple randomly sampled from the (strike, dip, rake) space
The possible strike angles were modeled to follow a normal distribution centered on the regional stress alignment at 210°N ± 30 ° (Moore et al., 2019), the dip angles are constrained to [75, 90]° to obtain pre- dominantly strike-slip events, and the possible rake angles were left unconstrained. 

The final catalog covers a duration of approximately 3 days and contains 21832 events with moment magnitudes Mw -2.53 to 0.44.
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Benchmarking results

® Two datasets (gaussian and site-specific noise)

® Machine-learning based and STA/LTA detection methods
® MLhas very good restitution for the site-specific noise case

a) Event rates: Target and recovery with SeisComP
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c) Event rates: Target and recovery with MALMI
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Presenter Notes
Presentation Notes
Comparison of observed and synthetic Fourier amplitude spectra Simulations were performed in a homogeneous-bedrock model with velocities calibrated by check shots 

The synthetic catalogue was generated in several steps. 
First, the timing of synthetic events was scaled from the observed temporal distribution in the input catalogue.
Second, the location of synthetic events was modeled to follow the spatial growth of the seismicity cloud observed in the input catalogue, introducing a 10 ft error to add variability. 
Third, the size of the events was determined by extending the frequency-magnitude distribution (FMD) to smaller magnitudes, creating a complete catalogue down to Mc target= −2.5 and randomly sampling from that FMD
Finally, the moment tensor was assigned as a six-component pure double couple randomly sampled from the (strike, dip, rake) space
The possible strike angles were modeled to follow a normal distribution centered on the regional stress alignment at 210°N ± 30 ° (Moore et al., 2019), the dip angles are constrained to [75, 90]° to obtain pre- dominantly strike-slip events, and the possible rake angles were left unconstrained. 

The final catalog covers a duration of approximately 3 days and contains 21832 events with moment magnitudes Mw -2.53 to 0.44.



Summary
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Geothermal Energy Projects
e Rescaling and ensemble approaches are effective in enhancing pre-
trained ML models to OOD scales:applicable to entire EQ magnitude
range (from labquakes of M=-9 to majortectonic earthquakes of M=8,
from 10 Hz to 10 MHz);

e High-resolution DL catalogs hold promise for detailed investigation of
fracturing dynam ics in postprocessing;

e More optimization is stillneeded forreal-time performances

e Digitaltwins of wave propagation could support decision making by
enabling benchmarking of monitoring software,and beyond (e.g.,
monitoring network optim ization,ground motion modeling)
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QuakePhase workflow application: FORGE DAS

Dataset Magnitude Sampling rate Instrument Mode
100 Kumamoto 7.3 100 Hz accelerometer segments
COSEISMIQ -0.6 - 3.8 100 Hz broadband seismometer  segments
VI-EDA -1.4-0.8 100 Hz broadband seismometer _continuous
200 IDAS 0.0 2000 Hz downhole DAS segments I
FORGE -2.2-0.6 4000 Hz downhole geophone continuous
— Reflection survey -2.1--1.5 1000 Hz surface geophone segments
e 300 Bedretto -4.6 - 1.6 200 KHz AE sensor segments
= Labquake -7.8--7.0 10 MHz AE sensor segments
Q
& 400
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Rescaling:5to 30
Model:PhaseNet original
Frequency:3 bands
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QuakePhase workflow application: FORGE Reflection Survey
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Dataset Magnitude Sampling rate Instrument Mode

Kumamoto 7.3 100 Hz accelerometer segments
COSEISMIQ -0.6 - 3.8 100 Hz broadband seismometer  segments
VI-EDA -1.4- 0.8 100 Hz broadband seismometer continuous
DAS 0.0 2000 Hz downhole DAS segments
FORGE -2.2-0.6 4000 Hz downhole geophone continuous
E{eﬂection survey -2.1--1.5 1000 Hz surface geophone segments
Bedretto -4.6-1.6 200 KHz AE sensor segments
Labquake -7.8--7.0 10 MHz AE sensor segments

Rescaling: 17




2024 FORGE on-site real-time monitoring Problem s:
e Notabletodoreal-time;
e Location issue due to active
borehole configuration;
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Presenter Notes
Presentation Notes
The first defect is that we are not able to do in real-time. It takes the workflow nearly 1 minute to backproject and locate one event. The second is the event locations are biased. This is because the sensor deployment of one borehole fails and we only left with two boreholes for monitoring, which can not provide enough azimuth constrain. Here we did not utilize DAS data for detection and location, if we were able to use DAS data, we could be able to get accurate locations.
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