Managing Induced Earthquake Potential with Deep Learning

<u>William L. Ellsworth¹</u>, Gregory Howe², Brandon Liu², Bridge Elmon², Matthew Gebara², Owen Murphy², Gregory C. Beroza¹

1 Stanford University, USA; 2 Stottler Henke Associates, USA

Skoumal, Barbour, Rubinstein and Glasgow (TSR, 2024)

Oklahoma Seismicity Forecast

Langenbruch, Weingarten and Zoback (2018)

In the last 14 months there have been 23 earthquakes M 4.0 – 5.1 in Oklahoma, Texas and New Mexico

Edmond, Oklahoma January 13, 2024 M_W 4.1, 4.3

Earthquakes on the same faults that ruptured in 2015 (M 4.3), 2016 (M 4.2) and 2017 (M 4.2)

Work done with: Jake Walter, Paul Oguari, Ben Allen (OGS) Jeong-Ung Woo (LANL) Margaret Glasgow, Rob Skoumal (USGS) Prague, Oklahoma February 2, 2024 $$\rm M_W\,5.1, 4.3$$

Earthquakes on the Wilzetta Fault, extending the 2011 M 5.7 sequence to the northeast

Oklahoma Seismicity Forecast

Magnitude

Falls City, Texas M_w 4.3, 4.7 February 17, 2024 M_w 4.6 January 30, 2025

Largest suspected frac-induced earthquake in North America Hermleigh, Texas July 23 - 27, 2024 M_w 4.6, 4.8, 4.1 North Tarzan, Texas September 17, 2024 M_w4.8

Ackerly, Texas February 28, 2025 M_w 4.7

Huang et al. (2017)

Woo and Ellsworth (2023)

Wells within 10 km of North Tarzan Earthquake

Predicted and Observed Peak Ground Acceleration

Permian Basin

Delaware, Midland, CBP

Seismicity >M2.5 2018-2024

Seismic Response Areas (SRAs)

Saltwater Disposal (Deep & Shallow)

A Deep Learning Model for Induced Seismicity Forecasting

- Develop a *time-series forecasting model* that incorporates injection and production information
- Demonstrate feasibility by outperforming baseline statistic models (such as rolling means)
- Keep it simple!

Problem Formulation / Data

- Divide region into subgrids
- Extract temporal time-series **features** from monthly operational data taken from ([data source])
 - Production of oil/water, deep disposal, shallow diosposal, fracking
- Extract labels from earthquake catalogs (TexNet in Texas, and OGS in Oklahoma)
 - Monthly earthquake count
 - Monthly maximum magnitude

Model Architecture

- We use a graph neural network architecture that uses attention to aggregate information
 - Temporal attention attends to the temporal context of each patch
 - Spatial attention aggregates temporal context of neighboring patches
- *Crucially*, use the baseline model as a feature
 - Learning against the residual error

Results (temporal)

- On a 55/30/15 train/test/validation split,
 39.04% improvement over a 6month rolling means estimate
- On Patch 14, we see a **59.42%** improvement over a 6-month rolling means estimate
- Strong temporal generalization

Pato	ch RM window (months)	RM train MSE	RM val MSE	RM test MSE	Model train MSE	Model val MSE	Model test MSE	Model relative val improvement
All	6	215.321	84.828	4.340	170.756	51.716	4.055	39.034%
All	3	170.172	67.147	5.463	128.795	47.750	4.671	28.887%
9	6	1649.308	409.899	5.898	1409.183	171.347	4.995	58.198%
9	3	1309.352	274.569	5.700	1046.254	148.888	4.631	45.773%
13	6	478.811	388.140	5.673	375.706	244.065	5.134	37.119%
13	3	429.906	357.859	4.104	345.936	246.150	3.516	31.216%
14	6	1493.753	279.029	5.477	1009.786	113.228	4.800	59.420 %
14	3	1039.098	108.156	6.178	706.127	55.266	5.067	48.902%
	2.5 - 2.0 - 2.0 - 1.5 - 1.0 - 0.5 -			Patch 1	.4		model rolling n true val	- 250 - 250 - 200 tuno - 150 ayantu - 100 - 50
	0.0 2006	2008 2010	2012	2014 2016	5 2018	2020 202	2 2024	

Results (spatial)

- Validating on random patches was too noisy, many patches saw little seismic activity
- Training on 9 and 13, validating on 14:
 +26.917%
- Training on 13 and 14, validating on 9: –54.368%
- Spatial generalization remains challenging

Holdout patch	6-month RM validation score	Model validation score	Relative model performance	Average Euclidean patch distance to other patches in the training set
9	1016.713	1569.485	-54.368%	1.825 patches
13	378.864	451.153	-19.080%	1.618 patches
14	892.372	652.172	+26.917%	1.207 patches

Discussion and Outlook

- Gains relative to rolling mean are modest with the current architecture. Patches may be too large, or attention mechanism too limited in space.
- Transfer learning is challenging. Can we generalize from Oklahoma to Texas despite geological differences?
- We anticipate that better methods for data normalization will improve performance.