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Langenbruch, Weingarten and Zoback (2018)

Oklahoma Seismicity Forecast
In the last 14 months there have been 23 

earthquakes M 4.0 – 5.1 
in Oklahoma, Texas and New Mexico



Edmond, Oklahoma January 13, 2024
MW 4.1, 4.3 

Earthquakes on the same faults that ruptured in 
2015 (M 4.3), 2016 (M 4.2) and 2017 (M 4.2)

Prague, Oklahoma February 2, 2024
MW 5.1, 4.3 

Earthquakes on the Wilzetta Fault, extending the 
2011 M 5.7 sequence to the northeast

Work done with:
Jake Walter, Paul Oguari, Ben 
Allen (OGS)
Jeong-Ung Woo (LANL)
Margaret Glasgow, Rob Skoumal 
(USGS)



Langenbruch, Weingarten and Zoback (2018)

Oklahoma Seismicity Forecast

log(N) = 6.25 – 1.25 M

Oklahoma 2018 – 2024
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Falls City, Texas 
MW 4.3, 4.7  February 17, 2024

MW 4.6 January 30, 2025

Huang et al. (2017)
Peak Ground Acceleration MW 4 to 4.5

MW 
4.3

MW 4.7

Largest suspected frac-induced 
earthquake in North America

North Tarzan, Texas
September 17, 2024

MW 4.8

Cumulative Wastewater Disposal
and Seismicity

Hermleigh, Texas
July 23 - 27, 2024
MW 4.6, 4.8, 4.1

Woo and Ellsworth (2023)

Ackerly, Texas
February 28, 2025

MW 4.7

Predicted and Observed Peak 
Ground Acceleration



Hermleigh

Ackerly

North Tarzan



A Deep Learning Model for Induced 
Seismicity Forecasting

• Develop a time-series 
forecasting model that 
incorporates injection and 
production information

• Demonstrate feasibility by 
outperforming baseline 
statistic models (such as 
rolling means)

• Keep it simple!



Problem Formulation / 
Data

• Divide region into subgrids
• Extract temporal time-series features 

from monthly operational data taken 
from ([data source])

• Production of oil/water, deep disposal, 
shallow diosposal, fracking

• Extract labels from earthquake 
catalogs (TexNet in Texas, and OGS in 
Oklahoma)

• Monthly earthquake count
• Monthly maximum magnitude



Model Architecture

• We use a graph neural network 
architecture that uses attention to 
aggregate information

• Temporal attention attends to the temporal 
context of each patch

• Spatial attention aggregates temporal context 
of neighboring patches

• Crucially, use the baseline model as a 
feature

• Learning against the residual error



Results 
(temporal)

• On a 55/30/15 
train/test/validation split, 
39.04% improvement over a 6-
month rolling means estimate

• On Patch 14, we see a 59.42% 
improvement over a 6-month 
rolling means estimate

• Strong temporal generalization

Patch RM 
window 
(months)

RM train 
MSE

RM val 
MSE

RM test 
MSE

Model 
train MSE

Model 
val MSE

Model 
test 
MSE

Model 
relative val
improvement

All 6 215.321 84.828 4.340 170.756 51.716 4.055 39.034%
All 3 170.172 67.147 5.463 128.795 47.750 4.671 28.887%
9 6 1649.308 409.899 5.898 1409.183 171.347 4.995 58.198%

9 3 1309.352 274.569 5.700 1046.254 148.888 4.631 45.773%

13 6 478.811 388.140 5.673 375.706 244.065 5.134 37.119%
13 3 429.906 357.859 4.104 345.936 246.150 3.516 31.216%
14 6 1493.753 279.029 5.477 1009.786 113.228 4.800 59.4̉20%

14 3 1039.098 108.156 6.178 706.127 55.266 5.067 48.902%



Results (spatial)

Holdout 
patch

6-month RM 
validation 
score

Model 
validation 
score

Relative model 
performance

Average Euclidean 
patch distance to 
other patches in the 
training set

9 1016.713 1569.485 -54.368% 1.825 patches
13 378.864 451.153 -19.080% 1.618 patches
14 892.372 652.172 +26.917% 1.207 patches

• Validating on random patches was too noisy, 
many patches saw little seismic activity

• Training on 9 and 13, validating on 14: 
+26.917%

• Training on 13 and 14, validating on 9:
–54.368%

• Spatial generalization remains challenging



Discussion and Outlook

•  Gains relative to rolling mean are modest with the current 
architecture.  Patches may be too large, or attention mechanism 
too limited in space.

• Transfer learning is challenging. Can we generalize from 
Oklahoma to Texas despite geological differences?

• We anticipate that better methods for data normalization will 
improve performance.
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