

The bound growth of induced earthquakes could de-risk hydraulic fracturing

Ryan Schultz, Federica Lanza, Ben Dyer, Dimitrios Karvounis, Remi Fiori, Peidong Shi, Vanille Ritz, Linus Villiger, Peter Meier, & Stefan Wiemer

 \succ Multiple models of M_{MAX} vs V. **> Evolution of moment release** \succ Arrested rupture dynamics \succ Geometry of stress perturbation > Tectonic fault size limitations >Attractive, impactful for mitigation. > Similar response from statistics. > Can these be falsified (or verified)?

Definition of Catalogue Terms

 \succ Draw from a (doubly truncated) GR-MFD.

 \succ Catalogue M, ΔM , M_{LRG}, & ΔM_{LRG} (M_{MAX}).

Key Insight!

CAP-test Methods

- \succ Simple tests :
 - \succ Visually examine GR-MFD.
 - \succ Quantify expected-observed.
- > CAP-tests
 - > Hypothesis test for M_{MAX}.
 - > MLE for M_{MAX}.
 - > EW-test, select best M_{MAX} model.
- Orders-of-magnitude more sensitive
 - to M_{MAX} than traditional approaches.
- > Start testing on real data!

Refuted M_{MAX}(V) for Large Cases

EGS & HF Cases

- > Apply CAP-tests to real data.
- Consider cases which are well documented, both for large catalogues and hydraulic
 - information.
 - > FORGE, Helsinki St1, SSFS
 - > PNR-2, PRN-1z

CAP at PNR-1z

- Handle entire sequence as single, connected cluster.
- > Serious evidence for bound M_{MAX}.
 - > Deficient in large events.
 - > 99.86% confident via KS-test.
 - > Small error (<0.01) via MLE-test.
 - >>100x odds ratio via EW-test.
- \succ Earthquakes were managed (M_L 1.6).

Case		Simple tests		CAP-tests			
Location	Cluster	<i>b</i> -value	δM_{LRG}	KS-test	MLE-test	EW-test	$\mathbf{M}_{\mathbf{MAX}}$ model
PNR-1z	All	1.21±0.05	-0.57	99.86%	<0.01	>100	Galis

CAP at PNR-1z

>>100x odds ratio via EW-test.

> Earthquakes were managed (M_L 1.6).

CAP at St1 (2019)

- > Handle entire sequence as single, connected cluster.
- > Serious evidence for bound M_{MAX}.
 - \succ Deficient in large events.
 - > 98.44% confident via KS-test.
 - > Small error (0.02) via MLE-test.
 - > 60x odds ratio via EW-test.
- > Earthquakes were managed (M_w 1.9).

Case		Simple tests		CAP-tests			
Location	Cluster	<i>b</i> -value	δM_{LRG}	KS-test	MLE-test	EW-test	M _{MAX} model
St1	All	1.34±0.06	-0.67	98.44%	0.02	~60	McGarr/Galis

CAP at St1 (2019)

> Earthquakes were managed (M_w 1.9).

CAP at PNR-2

 \succ Handle as two independent clusters (E & W), separated by stage 4. **Bound M_{MAX} at W-cluster.** \succ Deficient in large events. >>99.99% conf, <0.01 M, >100x b. \succ Unbound M_{MAX} at E-cluster. \succ Overabundance of large events. > 33.7% conf, ~2.5 M, 0.01x b. \succ E-clust caused moratorium (M₁ 2.9).

Case		Simple tests		CAP-tests				
Location	Cluster	<i>b</i> -value	δM_{LRG}	KS-test	MLE-test	EW-test	M _{MAX} model	
PNR-2	West	1.21±0.05	-1.24	>99.99%	< 0.01	>100	McGarr/Galis	
PNR-2	East	1.14±0.04	+0.84	33.7%	~2.50	0.01	Unbound	

CAP at FORGE

 \succ Handle as four clusters (E & W): s1s2, s3-2022, s3-s6, s7-s10. \succ Bound M_{MAX} at clusters 1-2. \succ Deficient in large events. > 99% conf, <0.01 M, 26-100x b. \succ Unbound M_{MAX} at cluster 3. \succ Overabundance of large events. > 65.3% conf, ~1.5, 0.02x b. \succ Largest event observed in cluster 3.

FORGE

3

 1.83 ± 0.10

+0.11

65.34%

~1.53

0.02

Unbound

Physical Interpretation

 \succ Dependence on clustering of stages. \succ The role of hydraulic connectivity. \succ Insights driven by sensitivity testing. > PNR-1z remains bound when truncating end stages (less conf). > PNR-1z becomes unbound/mixed when truncating start stages. \succ Inferences for pre-existing faults.

Cluster Definition		VS tost	MIE tost	EW-test	Muna	
Start Stage	End Stage	K5-test	WILE-test	odds ratio	.vilkG	
1	1	>99.99%	< 0.01	~27	0.44 M _W	
1	2	>99.99%	< 0.01	~2.6	$0.44 M_W$	
1	3	>99.99%	< 0.01	>100	$0.70 \ M_W$	
1	12	>99.99%	< 0.01	>100	$0.90 \ M_W$	
1	13	>99.99%	< 0.01	>100	$0.90 \ M_W$	
1	14	>99.99%	< 0.01	>100	$1.10 \ M_W$	
1	18	93.05%	< 0.01	>100	$1.10 \ M_W$	
1	22	>99.99%	< 0.01	>100	$1.10 \ M_W$	
1	30	>99.99%	< 0.01	>100	$1.30 \ M_W$	
1	31	>99.99%	< 0.01	>100	$1.40 \ M_W$	
1	32	99.56%	< 0.01	>100	$1.60 M_W$	
1	35	99.80%	< 0.01	>100	$1.60 M_W$	
1	37	>99.99%	< 0.01	>100	$1.60 \ M_W$	
1	38	99.62%	< 0.01	~93	$1.90 M_W$	
1	39	99.88%	< 0.01	~63	$1.90 \ M_W$	
1	40	99.80%	< 0.01	~85	$1.90 \ M_W$	
1	41	99.86%	<0.01	~45	1.90 M _W	

Cluster D	Cluster Definition		MIE tost	EW-test	Mara	
Start Stage	End Stage	K5-test	WILE-test	odds ratio	TATERC	
1	41	99.86%	< 0.01	~45	1.90 M _W	
2	41	99.50%	< 0.01	~33	1.90 M _W	
3	41	99.80%	< 0.01	~35	1.90 M _W	
12	41	98.20%	< 0.01	~2.2	1.90 M _W	
13	41	98.70%	< 0.01	~25	1.90 M _W	
14	41	97.80%	< 0.01	~16	1.90 M _W	
18	41	98.40%	< 0.01	~1.4	1.90 M _W	
22	41	94.26%	< 0.01	~7.6	1.90 M _W	
30	41	87.35%	< 0.01	~1.1	1.90 M _W	
31	41	58.90%	< 0.01	~1.5	$1.90 M_W$	
32	41	55.08%	0.02	~1.4	1.90 M _W	
35	41	62.78%	< 0.01	~1.5	1.90 M _W	
37	41	52.25%	< 0.01	~1.2	1.90 M _W	
38	41	59.84%	0.04	~1.1	1.90 M _W	
39	41	69.31%	0.01	~2.0	1.90 M _W	
40	41	44.30%	0.02	~0.8	1.90 M _W	
41	41	64.72%	0.01	~1.0	1.90 M _W	

Physical	Start Stage End Stage	KS-test MLE-	test odds ratio	M _{LRG} 0.44 M _W	
30 +30 SHMAX				ation	
Interences for pre-existing faults.			41 69.31% 41 44.30%		1.90 M _W

Induced Seismicity: Driven or triggered?

> Driven: controlled by anthropogenic subsurface stress changes. > Triggered: small stress change releases stored tectonic stress. > Unbound-triggered, Bound-driven. > CAP-tests represent first test to separate these two categories. \succ Test M_{MAX} models on driven cases.

Practical Implications for Operations

Use EW-test (at 3x) to discern bound/unbound.

 \succ Record all ΔM_{LRG} after EW-test results.

Operational Mitigation

>Additional tool to discern

problematic stages in real-time.

 \succ Changes reaction when

approaching red-light:

Bound safer, unbound riskier.
 Divert injection away from faults

that hamper resource production.

After Konstantinovskaya et al., 2021

500 m

Applied a suite of tools for testing M_{MAX}.
Able to clearly distinguish bound cases of IS.
Significant cluster-to-cluster variability, inferences for causation via fault reactivation.
Potential diagnostic tool, separating bound/unbound cases.
Implications for real-time hazard/risk mitigation.

http://www.seismo<u>.ethz.ch/en/about-us/all-employ</u>ees/Ryan-Schultz/

Schultz, Lanza, Dyer, ..., & Wiemer (2024). **The bound growth of induced earthquakes could de-risk hydraulic fracturing,** *submitted*, doi: <u>xx</u>.

http://www.seismo<u>.ethz.ch/en/about-us/all-employ</u>ees/Ryan-Schultz/

Synthetic (Unbound)

24

Synthetic (Tectonic)

Synthetic (McGarr)

26

Synthetic

(Galis)

PNR-1z

PNR-2

29

