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Shaking = source*path*site
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Presenter Notes
Presentation Notes
But to answer these questions, let's start by explaining why buildings collapse during an earthquake.The reason is simple: an earthquake is caused by the sudden and very rapid movement of a seismic fault. This movement generates seismic waves that propagate from the depths to the surface. These waves, especially S-waves, shake the base of buildings in a horizontal direction. If they have not been designed and built to withstand this horizontal shaking, buildings will be damaged and sometimes destroyed.Earthquakes are not killing people. Building do. 
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Game changer: high -quality datasets: global

Karina  Lovikne s , PhD the s is



• Merging of seismological and 
crowdsourced smartphone data

• Uncertainties and peculiarities of 
each type of data integrated

• Mapping of spatial variations in 
seismic amplification

Game changers: high -quality datasets: local
Example  of the  re d zone  of Campi Fle gre i

Finazzi F., Cotton F. and R. Bossu . Citizen’s 
smartphones unravel earthquake shaking in 
urban areas. Submitted. 
https:// doi.org /10.21203/rs.3.rs -5886826/v1
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How can we improve ground -shaking prediction 
with more data? 

1. Ca libra tion of loca l (line a r) s ite - amplific a tion mode ls
2 . From we ak motion to  s trong  motion  

• Calibra tion of non- line a r mode ls  of s oil be havior
• Magnitude  s ca ling  of s tre s s - drops

3 . Frontie rs
• Are  induce d/trigge re d  e a rthquake s  d iffe re nt from te c tonic  e ve nts ?
• Are  s ource  prope rtie s  magnitude /de pth de pe nde nt?
• Toward  the  pre d ic tion of time  his torie s
• The  high fre que ncy frontie r (a tte nua tion): loca l re cords  ne e de d
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Machine learning prediction of “ linear ” site response using 
single - station records ( seisamp )

Zhu C, Cotton F, Kawase H, Bradley B (2023) Separating broad -band site response from single -station 
seismograms. Geophysical Journal International 234(3): 2053 -2065
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High resolution amplification map resulting from the 
analysis of both smartphones and seismological records

Finazzi F., Cotton F. and R. Bossu . Citizen’s 
smartphones unravel earthquake shaking in 
urban areas. Submitted. 
https:// doi.org /10.21203/rs.3.rs -5886826/v1
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Shaking 
amplification 
at 1Hz

Weatherill G, Crowley H, Roullé A, Tourlière 
B, Lemoine A, Gracianne C, Kotha SR, Cotton 
F (2023) Modelling site response at regional 
scale for the 2020 European Seismic Risk 
Model (ESRM20). Bulletin of Earthquake 
Engineering 21(2): 665-714

European amplification model based on slope and geology
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From weak motions to strong motions:
Velocity variation measured by autocorrelation at station KMMH 16 from 

2002 to 2020 (Kumamoto Earthquake sequence) 

Esfahani R, Cotton F, Bonilla LF (2024) Temporal variations of the ‘in -situ’ nonlinear behaviour of shallow sediments during the 2016 
Kumamoto Earthquake sequence. Geophysical Journal International 238(3): 1626 -1637.
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In situ relationship between shear -modulus and strain (PGV/vs30). A 
new way to calibrate non - linear models of soil behavior 
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Level of shaking producing 
“significant” non - linear effects

for EC8 soil classes

Loviknes , K., Bergamo, P., Fäh, D., and Cotton, F. (2024). 
Systematic assessment (1997 - 2024) of nonlinear soil behaviour at 
KiK-NET sites in Japan. thresholds and controlling site factors. 
Earthquake Spectra, in press

High variab ility from one  s ta tion to  anothe r
within the  s ame s ite  c las s
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From weak motion to strong -motion: 
Variation of stress -drop with magnitude (Western -Europe, 1990 -2020) 

Yen M -H, Bindi D, Oth A, Edwards B, Zaccarelli R, Cotton F ( 2024 ) Source 
parameters and scaling relationships of stress drop for shallow crustal 
seismic events in Western Europe. Journal of Seismology 28: 63-79.
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Variation of stress -drop with magnitude and depth

Yen M -H, Bindi D, Oth A, Edwards B, Zaccarelli R, Cotton F (2024) Source parameters and 
scaling relationships of stress drop for shallow crustal seismic events in Western Europe. 
Journal of Seismology 28: 63 -79.
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Variation of stress -drop 
with depth (central 

Italy)

Bindi, D., Spallarossa , D., Picozzi, M., & Tarchini , G. (2024). 
Scaling and Depth Variability of Source Parameters in 
Central and Southern Italy Using Regional Attenuation 
Models. Bulletin of the Seismological Society of America
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Machine - learning -based simulation of time histories 
Mode l Conditione d  on pa rame te rs  [Mw, R, Vs 30 ]

STFT

Time-frequency 
representation
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Real or Fake
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TFCGAN: Time - Fre que ncy Conditiona l Ge ne ra tive  Adve rs a ria l ne twork
Esfahani R, Cotton F, Ohrnberger M, Scherbaum F (2023) TFCGAN: Nonstationary Ground‐Motion Simulation in the Time –Frequency Doma in Using Conditional 
Generative Adversarial Network (CGAN) and Phase Retrieval Methods. Bulletin of the Seismological Society of America 113(1): 4 53-467.

Florez, MA, Caporale M, Buabthong P, Ross ZE, Asimaki D, Meier M ( 2022 ) Data -driven synthesis of broadband earthquake ground motions using artificial 
intelligence, Bulletin of the Seismological Society of America 112(4): 1979-1996.
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Time -domain 
simulations 

input=M, R, Vs30

TFCGAN s imula tion

Phys ic - bas e d  s imula tion

Re a l da ta

Esfahani et al. (i n preparation )
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Quality factors and attenuation are highly site specific
(on site records needed)

Pilz, M., Cotton, F., & Zhu, C. ( 2025 ). 
Site- response high - frequency frontiers 
and the added value of site -specific 
earthquake record -based 
measurements of velocity and 
attenuation. Earthquake Spectra, 
87552930241311312 .



18

How can we improve ground -shaking prediction 
with more data? 

1. Ca libra tion of loca l (line a r) s ite - amplific a tion mode ls
2 . From we ak motion to  s trong  motion  

• Calibra tion of non- line a r mode ls  of s oil be havior
• Magnitude  s ca ling  of s tre s s - drops

3 . Frontie rs
• Are  induce d/trigge re d  e a rthquake s  d iffe re nt from te c tonic  e ve nts ?
• Are  s ource  prope rtie s  magnitude /de pth de pe nde nt?
• Toward  the  pre d ic tion of time  his torie s
• The  high fre que ncy frontie r (a tte nua tion): loca l re cords  ne e de d
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Site specific amplification (site term)

𝑙𝑙𝑙𝑙 𝐺𝐺𝐺𝐺𝑒𝑒𝑒𝑒 = 𝐹𝐹𝑀𝑀 𝐺𝐺 + 𝐹𝐹𝑅𝑅 𝑅𝑅,𝐺𝐺 + 𝛿𝛿𝛿𝛿2𝛿𝛿𝑒𝑒 + 𝛿𝛿𝐵𝐵𝑒𝑒 + 𝛿𝛿𝛿𝛿𝛿𝛿𝑒𝑒𝑒𝑒

x1.57

PGA

Example  of the  s ite  te rm a t the  s ta tion AQV Aquila  
Ita ly (13  re c ords )

Kotha SR, Bindi D, Cotton F (2017) From Ergodic to Region - and Site -
Specific Probabilistic Seismic Hazard Assessment: Method Development 
and Application at European and Middle Eastern Sites. Earthquake 
Spectra 33(4): 1433 -1453
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European amplification model based on slope and geology

Graeme Weatherill

Weatherill  G, Crowley H, Roullé A, Tourlière  B, 
Lemoine A, Gracianne  C, Kotha  SR, Cotton F ( 2023 ) 
Modelling site  response  at regional scale  for  the 
2020 European Seismic  Risk Model (ESRM 20). 
Bulletin of  Earthquake  Engineering 21(2): 665 -714
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Method: data -analysis,  
partitioning and quantification

• = Be twe e n- e ve nt re s idua l: e a rthquake  is  
more  or le s s  e ne rge tic  than ave rage  for 
the  s ourc e  p rope rtie s  (M, SoF, de p th e tc .)

• = Within- e ve nt re s idua l: g round  motion a t 
s ite s  highe r/lowe r than e xpe c te d  g ive n 
the  d is tanc e  and  s ite  p rope rtie s

Al Atik L, Abrahamson N, Bommer JJ, Scherbaum F, Cotton F, Kuehn N 
(2010) The Variability of Ground -Motion Prediction Models and Its 
Components. Seismological Research Letters 81(5): 794 -801.
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Game changers: high -quality datasets
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