4th Schatzalp Workshop on Induced Seismicity, 19th March 2025

Forecasting induced earthquake magnitudes using extreme value theory

James Verdon¹, Leo Eisner²

1. School of Earth Sciences University of Bristol, UK. james.verdon@bristol.ac.uk

2. Seismik s.r.o. Prague, CZ

Method

Upper limit and record-breaking event theory (Cooke, 1979):

$$M_{UL} = 2M_n^O - \sum_{i=0}^{n-1} \left[\left(1 - \frac{i}{n} \right)^n - \left(1 - \frac{i+1}{n} \right)^n \right] M_{n-i}^O$$

- *M* can be anything in this case earthquake magnitude **or** moment
- M_i^o are the observed values, ordered from smallest to largest (so M_n^o is the largest observed event magnitude).

Method

Or...

• ... estimate the size of the next "jump"

$$M_{JL} = M_{MAX}^O + \Delta M_{MAX}$$

$$\Delta M_{MAX} = 2\Delta M_{n_j}^{O} - \sum_{i=0}^{n_j-1} \left[\left(1 - \frac{i}{n_j} \right)^{n_j} - \left(1 + \frac{i+1}{n_j} \right)^{n_j} \right] \Delta M_{n_j-i}^{O}$$

• ΔM_i^o are the observed jumps (increase w.r.t any previous event), ordered from smallest to largest (so ΔM_n^o is the largest observed event magnitude jump).

Datasets

- 86 individual sequences...
- ... containing **331 record breaking** events

Model Performance

We make forecasts in a pseudo-prospective manner:

- At a given time, all previous events are used to estimate M_{NRB}
- If the next window contains a new "record-breaking" event (*M^O_{NRB}*) then we compare the observed event magnitude with the modelled values

Performance Metrics:

University of

 RMS error, σ_{RMS}; Pearson correlation coefficient, *r*; Line of best fit between modelled and observed mags, *m*; How many significant underpredictions, *N_{UP}* [M_{OBS} > M_{MOD} + 0.5]

Results

University of BRISTOL

- Forecasts generally work well: metrics are better than for S₁ or S_{EFF} models (see Verdon et al., PTRSA, 2024)
- Jump-limited using magnitudes is more scattered (lower *r* value, higher σ_{RMS} .
- Number of underpredictions is unsatisfactory (10 – 25 %)

An Accidental Solution...

• From Mendecki (2016):

$$P_{max} = 2P_{maxo} - \sum_{i=1}^{n-1} P_{maxo-i} \left[\left(1 - \frac{i}{n} \right)^n - \left(1 - \frac{i+1}{n} \right)^n \right],$$
typo!

- Missing *i* = 0-th term from the summation
- Results generally overpredict, though in a consistent way.

But:

- No overpredictions (in 86 individual sequences, with 330 individual record-breaking events)
- Summation from i = 1 defines our upper bound, M_{UB}

 We normalise each event by the M_{UB} and M_{JL_MO} values at the time the event occurred:

$$M_N^O = \frac{M_{NRB}^O - M_{LB}}{M_{UB} - M_{LB}}$$

- Behaviour is consistent most cases clustered around 0 (i.e., M^o_{NRB} ≈ M_{LB}), but a tail of events reaching towards 1 (i.e., M^o_{NRB} = M_{UB}).
- Observed distribution is well-fitted by a Generalised Extreme Value (GEV) model $(k_{GEV} = 0.23, \sigma_{GEV} = 0.1, \mu_{GEV} = 0.0)$

- We can use this behaviour to produce a probabilistic estimate for the next record-breaking event during a sequence.
- Compute M_{LB} and M_{UB} , and assign probability values to magnitudes between these values:

• **Demo:** Application to PNR-2 – an out of sample case that was not used to define the probability distribution

Conclusions

- M_{MAX} forecasting using extreme value statistics shows significant potential
- We have tested various implementations of this approach across a very large number of case studies. We find good correlation between forecast and observed maximum magnitudes
- We (accidentally) identified a way to deal with outlying underpredictions...
- Empirical calibration with a large number of observed sequences allows us to define a probabilistic estimate for M_{NRB}

Acknowledgements

Bristol and Oxford Passive Seismic Research Consortium

 \sim

 Λ

