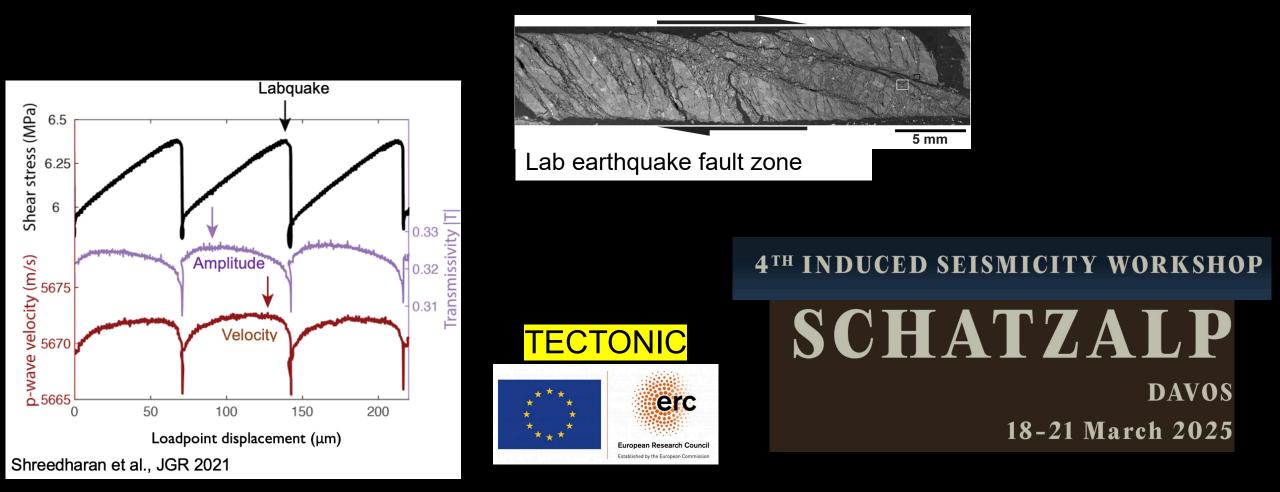
Learning Earthquake Physics from Labquakes, Data Science and Machine Learning

Chris Marone

La Sapienza, Università di Roma Italia e Penn State University USA



Learning Earthquake Physics from Labquakes, Data Science and Machine Learning

nature communications

https://doi.org/10.1038/s41467-024-46238-3

Crustal permeability generated through microearthquakes is constrained by seismic moment

Received: 23 November 2023 Accepted: 20 February 2024

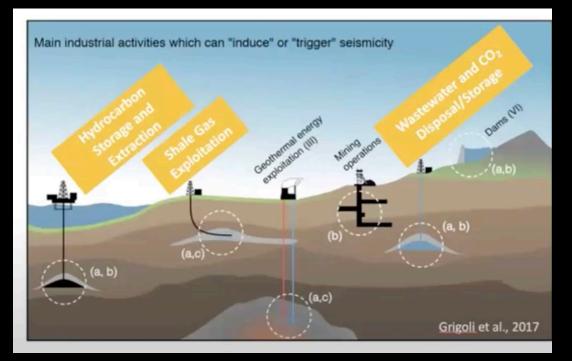
Article

Pengliang Yu $\mathbb{O}^{1,2}$, Ankur Mali \mathbb{O}^3 , Thejasvi Velaga⁴, Alex Bi⁵, Jiayi Yu², Chris Marone^{1,6}, Parisa Shokouhi⁷ & Derek Elsworth $\mathbb{O}^{1,2}$

Deep Learning Recovers Permeability Evolution from Fluid-Induced Microearthquakes for Hectometer-scale Stimulations

Pengliang Yu¹, Anne Obermann², Antonio Pio Rinaldi², Nima Gholizadeh Doonechaly³, Chris Marone^{1,4}, Ankur Mali⁵, Parisa Shokouhi⁶, Derek Elsworth¹

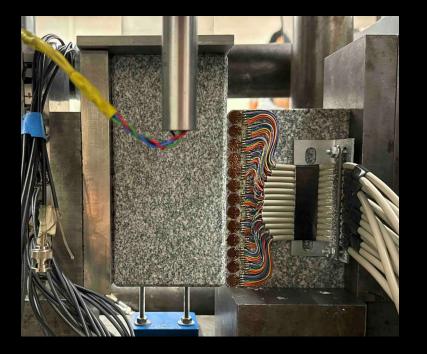
Submitted to GRL 2025



4TH INDUCED SEISMICITY WORKSHOP

DAVOS

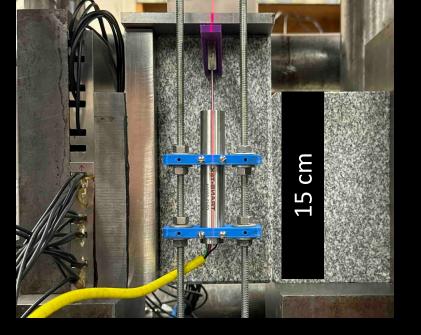
18-21 March 2025

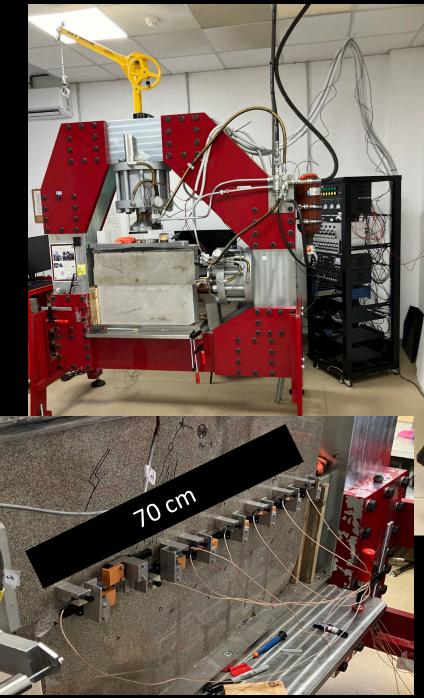


Learning from Labquakes

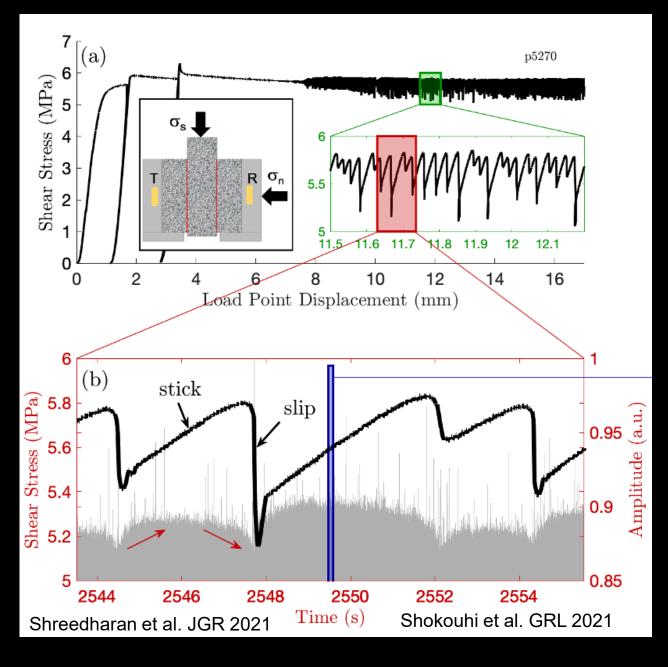
lab earthquakes

Fault normal stresses of 10's of MPa





Repetitive stick-slip events: lab earthquakes as a tool for earthquake physics



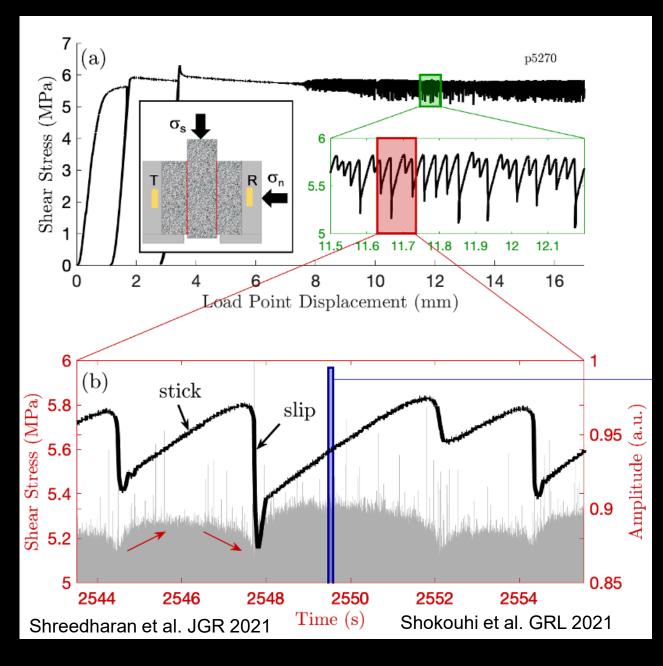
Explainable Machine Learning

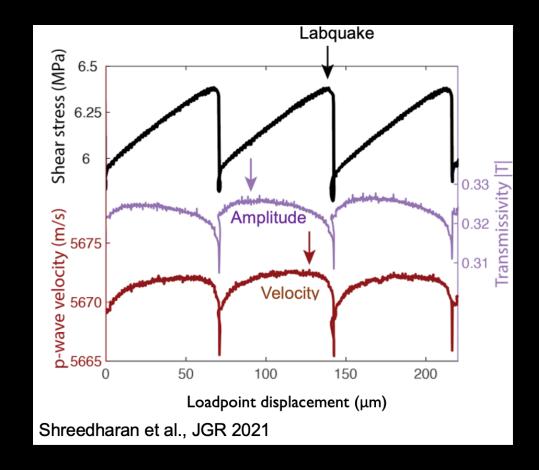
100's of lab earthquakes in each experiment

- Carefully controlled conditions
- Systematic changes in behavior for small changes in control parameters

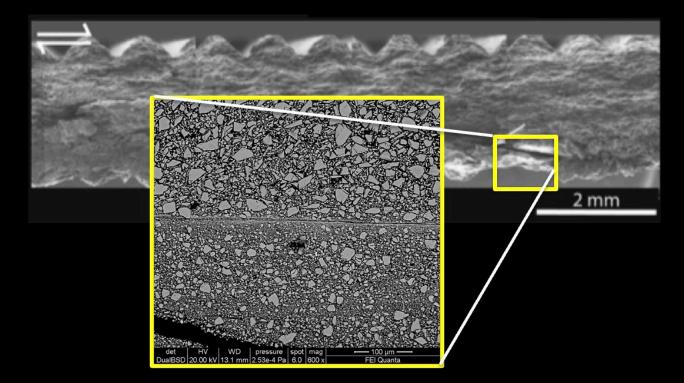
Lab seismometers close to the fault zone

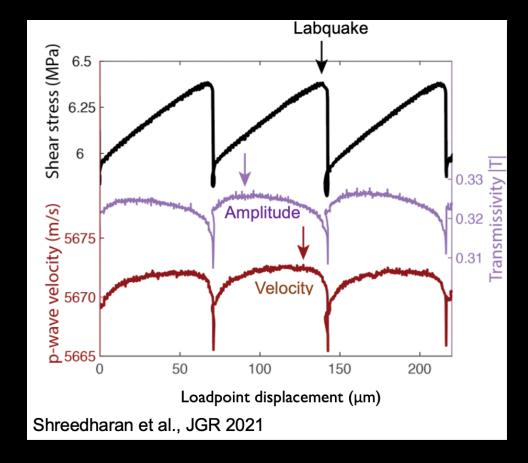
Repetitive lab earthquakes, Physics of Earthquake Precursors





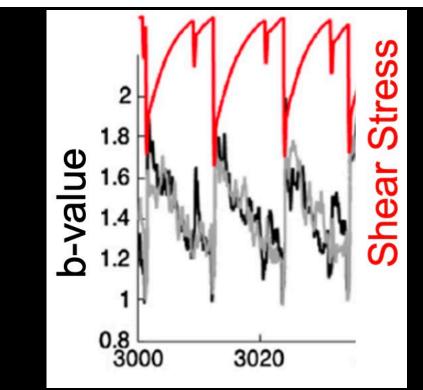
Repetitive lab earthquakes, Physics of Earthquake Precursors





Evolution of *b*-value during the seismic cycle: Insights from laboratory experiments on simulated faults

J. Rivière^{a,b,*}, Z. Lv^{c,b}, P.A. Johnson^d, C. Marone^b



31 August 1973, Volume 181, Number 4102

SCIENCE

Earthquake Prediction: A Physical Basis

Rock dilatancy and water diffusion may explain a large class of phenomena precursory to earthquakes.

Christopher H. Scholz, Lynn R. Sykes, Yash P. Aggarwal

The Dilatancy Model

Observations for a number of earthquakes made at Garm, U.S.S.R., and in the New York Adirondacks and observations of the San Fernando earthquake show that, prior to each of these earthquakes, the ratio of seismic velocities $v_{\rm I'}/v_{\rm S}$ decreased to anomalously low values. In each of these cases, earthquakes occurred shortly after the return of $v_{\rm I'}/v_{\rm S}$ to its normal value.

Nur (4) and Aggarwal *et al.* (2) independently put forward a model that would explain this phenomenon. The model is based on laboratory fracture studies which show that rock

Geophysical Research Letters

RESEARCH LETTER

10.1002/2017GL074677

Key Points:

- Machine learning appears to discern the frictional state when applied to laboratory seismic data recorded during a shear experiment
- Machine learning uses statistical characteristics of the recorded seismic signal to accurately predict slip failure time
- We posit that similar machine learning approaches applied to geophysical data in Earth will provide insight in fault frictional processes

Supporting Information:

Supporting Information S1

Correspondence to:

B. Rouet-Leduc, bertrandrl@lanl.gov

Machine Learning Predicts Laboratory Earthquakes

Bertrand Rouet-Leduc^{1,2}, Claudia Hulbert¹, Nicholas Lubbers^{1,3}, Kipton Barros¹,

Colin J. Humphreys², and Paul A. Johnson⁴

¹Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, NM, USA, ²Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK, ³Department of Physics, Boston University, Boston, MA, USA, ⁴Geophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract We apply machine learning to data sets from shear laboratory experiments, with the goal of identifying hidden signals that precede earthquakes. Here we show that by listening to the acoustic signal emitted by a laboratory fault, machine learning can predict the time remaining before it fails with great accuracy. These predictions are based solely on the instantaneous physical characteristics of the acoustical signal and do not make use of its history. Surprisingly, machine learning identifies a signal emitted from the fault zone previously thought to be low-amplitude noise that enables failure forecasting throughout the laboratory quake cycle. We infer that this signal originates from continuous grain motions of the fault gouge as the fault blocks displace. We posit that applying this approach to continuous seismic data may lead to significant advances in identifying currently unknown signals, in providing new insights into fault physics, and in placing bounds on fault failure times.

Lab earthquakes are predictable

JGR Solid Earth

RESEARCH ARTICLE 10.1029/2021JB022195

Special Section:

Machine learning for Solid Earth observation, modeling and understanding

Key Points:

 We use an attention network to forecast the time-to-failure and shear stress of lab earthquakes

RTICLEAttention Network Forecasts Time-to-Failure in
Laboratory Shear Experiments

Hope Jasperson¹ ⁽⁶⁾, David C. Bolton² ⁽⁶⁾, Paul Johnson³ ⁽⁶⁾, Robert Guyer^{3,4} ⁽⁵⁾, Chris Marone^{5,6} ⁽⁶⁾, and Maarten V. de Hoop⁷

¹Rice University, EEPS, Houston, TX, USA, ²University of Texas Institute for Geophysics, Austin, TX, USA, ³Los Alamos National Laboratory, Geophysics Group, Los Alamos, NM, USA, ⁴Department of Physics, University of Nevada, Reno, NV, USA, ⁵Department of Geosciences, Pennsylvania State University, State College, PA, USA, ⁶Dipartimento Scienze della Terra, Sapienza Universitá di Roma, Rome, Italy, ⁷Rice University, CAAM, Houston, TX, USA

2021

Deep Learning Can Predict Laboratory Quakes From Active Source Seismic Data

Parisa Shokouhi¹, Vrushali Girkar², Jacques Rivière¹, Srisharan Shreedharan³, Chris Marone³, C. Lee Giles^{2,4}, and Daniel Kifer² GRL, 2021

Characterizing Acoustic Signals and Searching for Precursors during the Laboratory Seismic Cycle Using Unsupervised Machine Learning

by David C. Bolton, Parisa Shokouhi, Bertrand Rouet-Leduc, Claudia Hulbert, Jacques Rivière, Chris Marone, and Paul A. Johnson SRL 2019

Prediction

- Timing
- Size (stress drop, fault slip velocity)
- Fault Zone Stress

Geophysical Research Letters 2018 Earthquake Catalog-Based Machine Learning Identification RESEARCH LETTER 10.1029/2018GL079712 of Laboratory Fault States and the Effects of Magnitude of Completeness Key Points: Machine learning can model important characteristics of Nicholas Lubbers¹, David C. Bolton², Jamaludin Mohd-Yusof³, Chris Marone², laboratory fault physics by training on Kipton Barros¹, and Paul A. Johnson⁴ finely resolved catalogs of slip events Machine Learning Predicts the Timing and Shear Stress **Evolution of Lab Earthquakes Using Active Seismic Monitoring of Fault Zone Processes** JGR. 2021

Srisharan Shreedharan^{1,2}, David Chas Bolton¹, Jacques Rivière³, and Chris Marone^{1,4}

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress 2022

Laura Laurenti^{a,*}, Elisa Tinti^{a,b}, Fabio Galasso^a, Luca Franco^a, Chris Marone^{a,c}

. . .

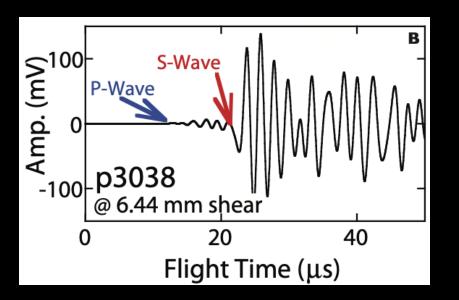
Lab earthquake prediction

State Of The Art

nature communications 202

2023

Deep Learning Methods to measure the evolution of fault zone elastic properties during the lab seismic cycle



Article

https://doi.org/10.1038/s41467-023-39377-6

6

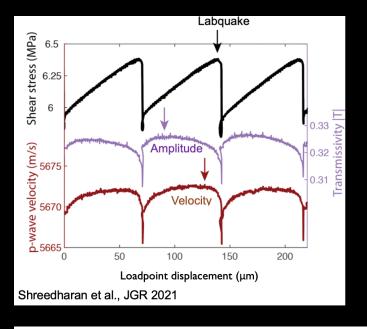
Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes

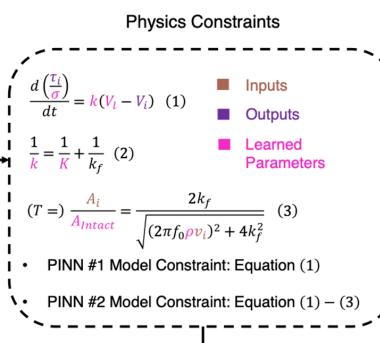
Received: 8 December 2022	Prabhav Borate ¹ , Jacques Rivière ¹ , Chris Marone ^{2.3} , Ankur Mali © ⁴ , Daniel Kifer ⁵ & Parisa Shokouhi © ¹ ⊠					
Accepted: 7 June 2023						

Nature scientific reports 2024 Physics informed neural network can retrieve rate and state friction parameters from acoustic monitoring of laboratory stick-slip experiments

Prabhav Borate¹, Jacques Rivière¹, Samson Marty², Chris Marone^{3,4}, Daniel Kifer⁵ & Parisa Shokouhi^{1⊠}

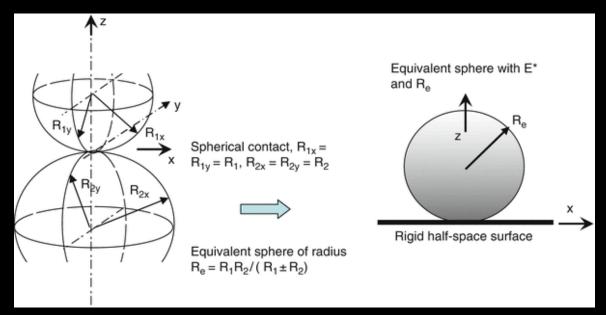
10





Explainable Machine Learning

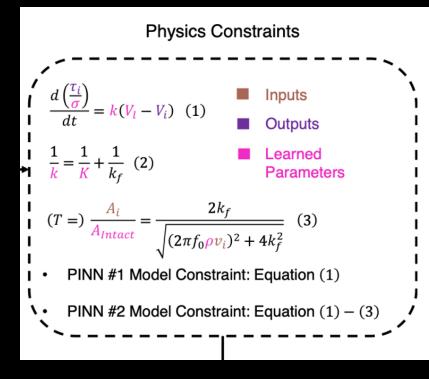
Active acoustic studies of the lab seismic cycle

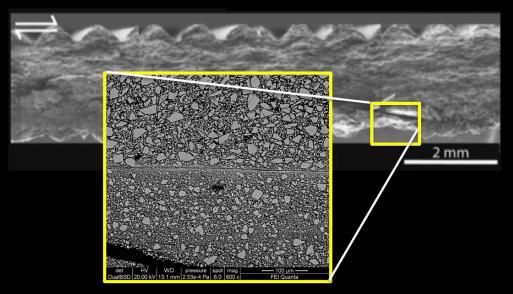


JKR contact theory

$$|T| = \frac{A}{A_0} = \frac{2k_I}{\sqrt{((\omega\rho v)^2 + 4k_I^2))}} \qquad TOF = \tan^{-1}\frac{(\omega\rho v / 2k_I)}{(\omega)}$$

Tattersall, 1973

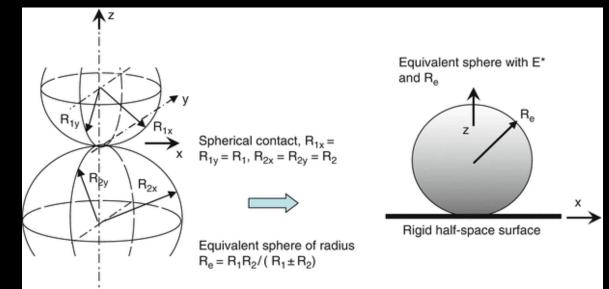




Explainable Machine Learning

Rate/State Friction and Contact Aging

Contact Age = Frictional State

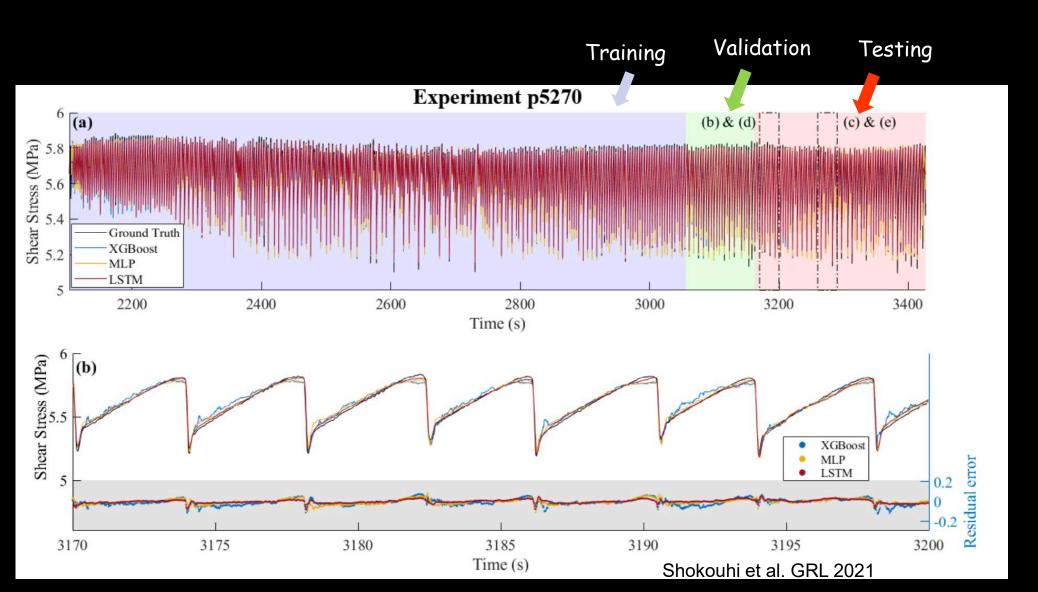


JKR contact theory

$$|T| = \frac{A}{A_0} = \frac{2k_I}{\sqrt{((\omega\rho v)^2 + 4k_I^2))}} \qquad TOF = tan^{-1}\frac{(\omega\rho v / 2k_I)}{(\omega)}$$

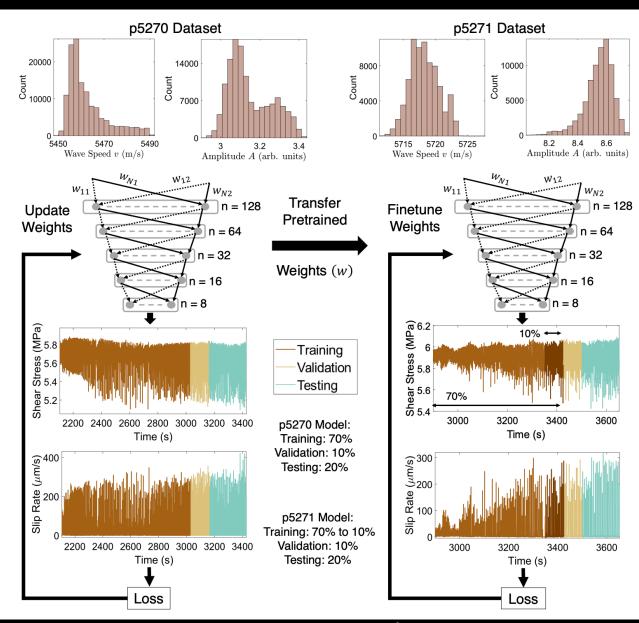
Tattersall, 1973

Machine learning: Evolution of fault zone elastic properties to predict shear stress and time to failure



Lab seismometers

Explainable Machine Learning: Generalizable Models





Borate et al. Nat. Comm. 2023

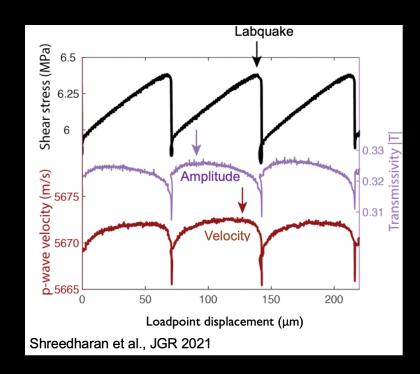
6

Article

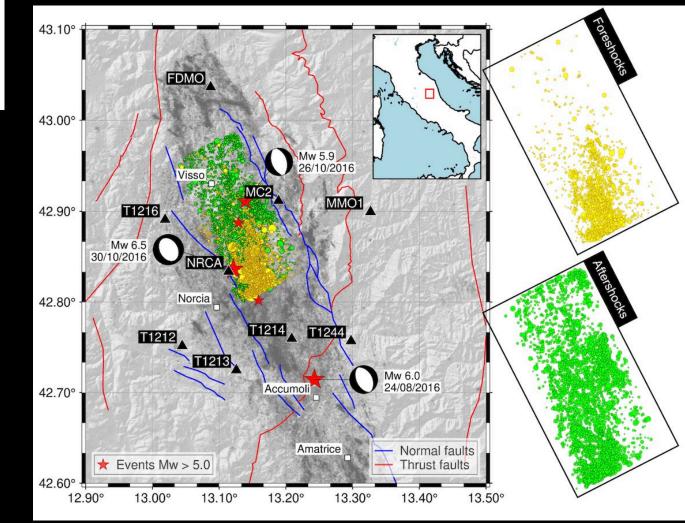
https://doi.org/10.1038/s41467-024-54153-w

Probing the evolution of fault properties during the seismic cycle with deep learning

Received: 30 May 2024 Accepted: 4 November 2024 Laura Laurenti \mathbb{O}^1 , Gabriele Paoletti \mathbb{O}^2 , Elisa Tinti \mathbb{O}^2 , Fabio Galasso \mathbb{O}^3 , Cristiano Collettini \mathbb{O}^2 & Chris Marone $\mathbb{O}^{2,4}$

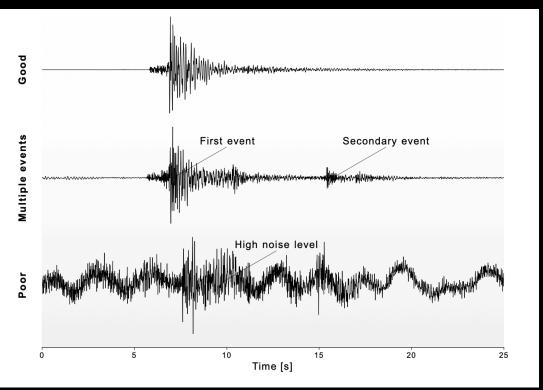


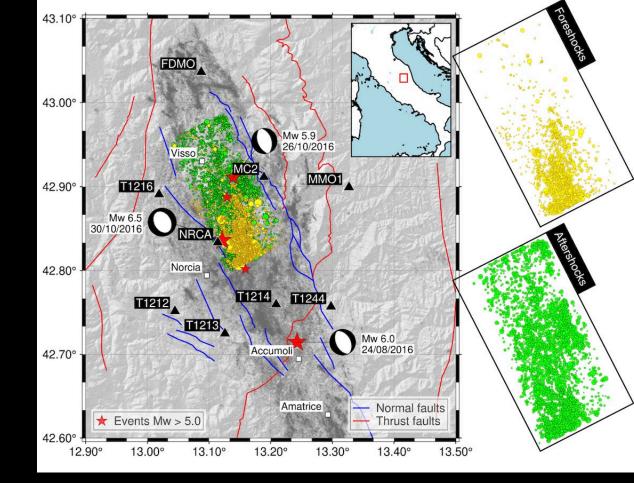
Application to TECTONIC faults



Laurenti et al., 2024

2016 Norcia Earthquake M6.5

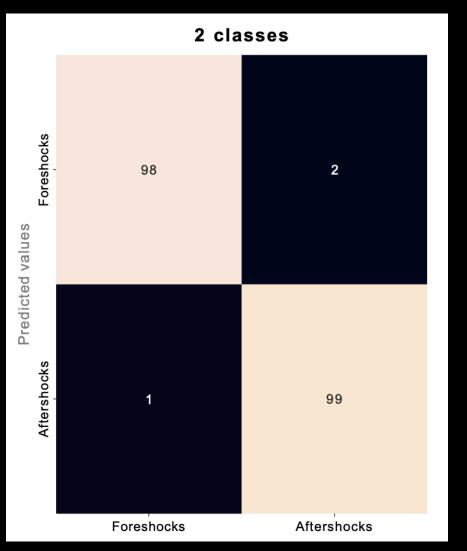


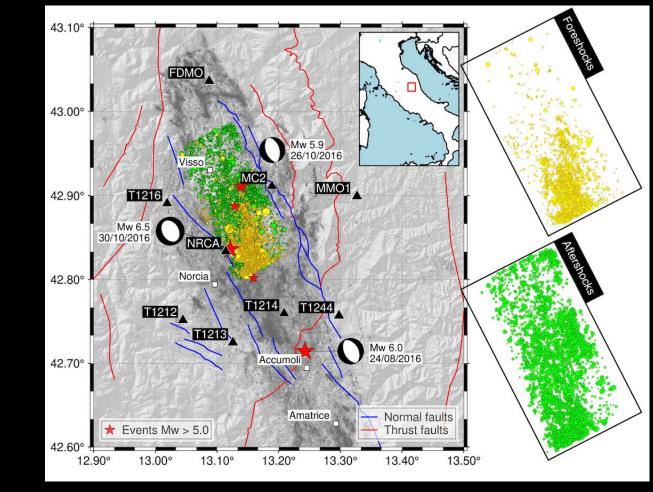


Laurenti et al., 2024

4,694 events pre mainshock5,135 events post mainshock

Machine Learning Model Binary Classification of Foreshocks and Aftershocks





Laurenti et al., 2024

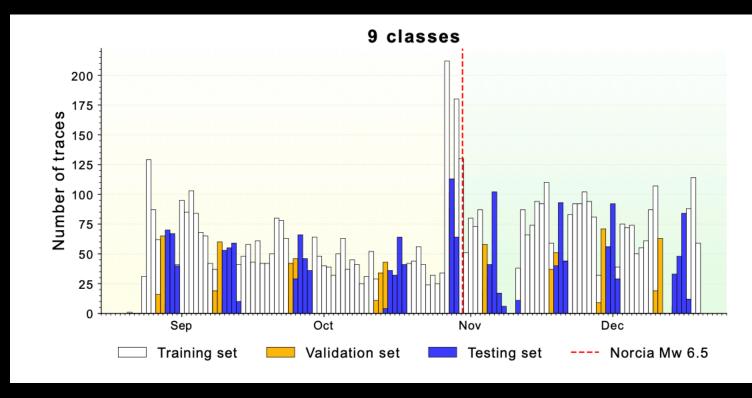
4,694 events pre mainshock5,135 events post mainshock

Toward a prediction of time to failure

9 classes

FEQ1	84	1	0	0	0	5	0	10	1		
FEQ2	7	68	20	3	0	0	0	0	1		
FEQ3	4	36	43	16	1	0	0	0	1		
FEQ4	1	2	16	58	3	0	0	5	15		
AEQ1 Visso	0	0	0	0	99	0	1	0	0		
AEQ1	0	0	0	0	1	80	9	10	0		
AEQ2	0	0	0	0	0	43	1	56	0		
AEQ4 AEQ3 AEQ2	0	0	1	0	1	1	2	30	66		
AEQ4	1	0	0	0	0	1	0	36	62		
	FEQ1 FEQ2 FEQ3 FEQ4 Visso AEQ1 AEQ2 AEQ3 AEQ4										

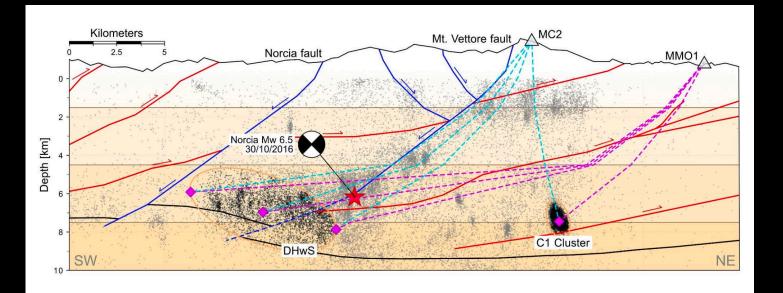
Actual values



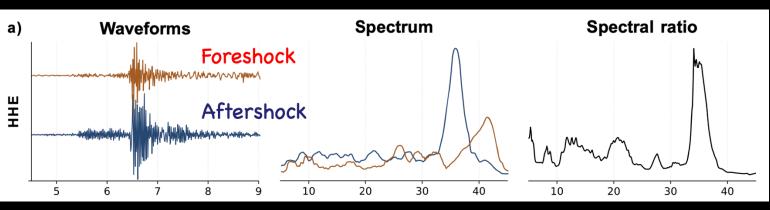
Laurenti et al., 2024

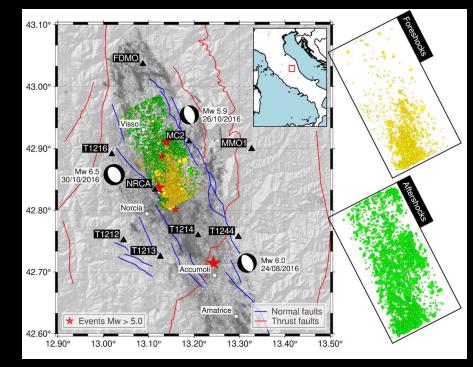
- CNN with batch normalization and ReLU activation layer.
- The network has 7 convolutional layers with an increasing number of filters up to a maximum of 256 in the last two convolutional blocks

Explainable Machine Learning How does it work?



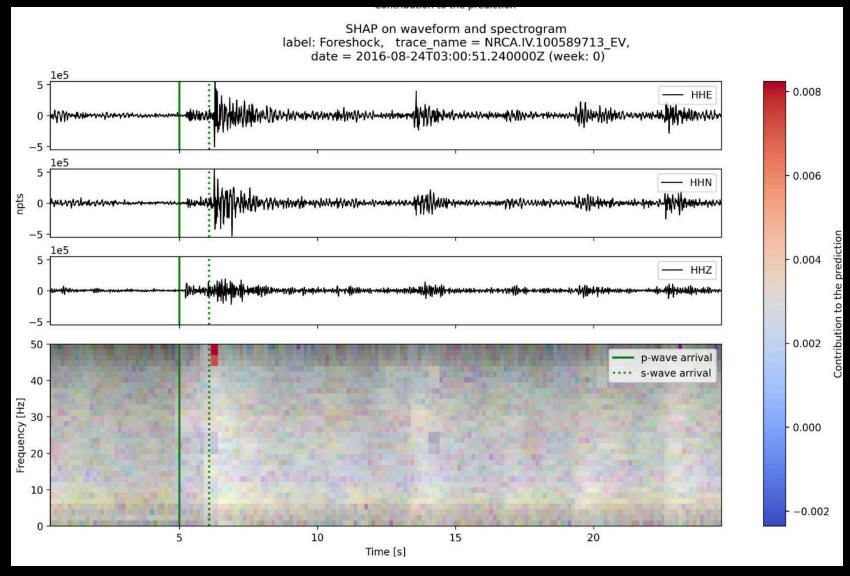
Compare waveforms of co-located events





Laurenti et al., 2024

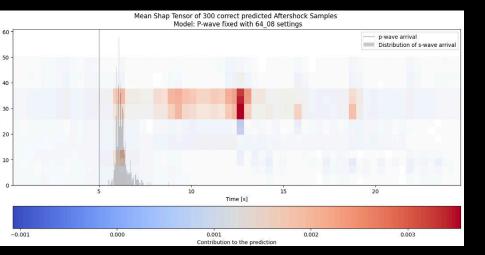
Spectrograms to create images for a CNN



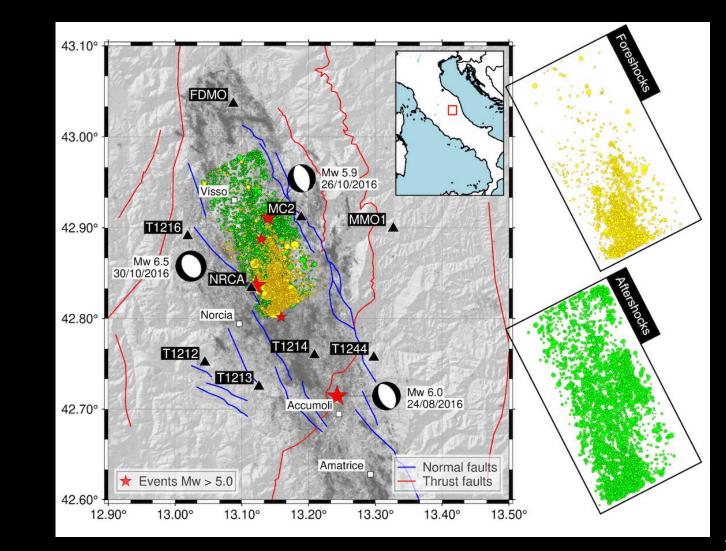
Magrini, Marrocco et al., in prep, 2025

Explainable Machine Learning

SHAP Shapley Additive Explanations

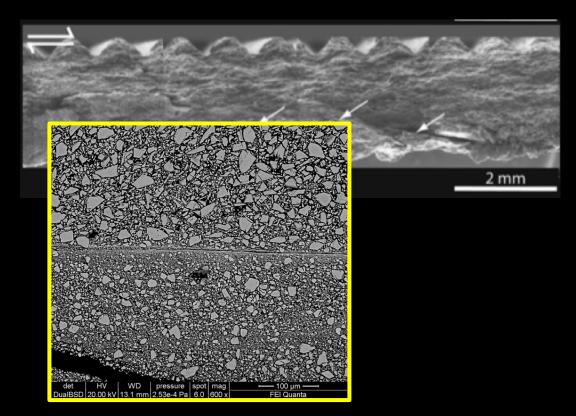


Proxy for fault zone stress state



Summary

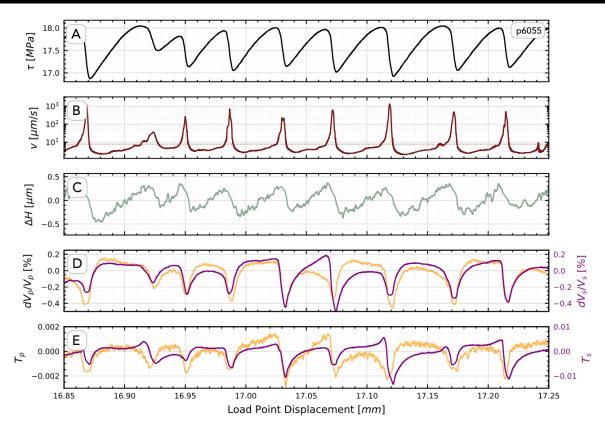
ML/DL models can predict lab earthquakes Explainable ML can teach us earthquake physics



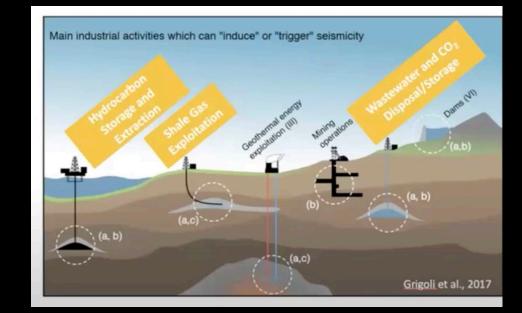
We have studied simple conditions (room temp., limited set of fault rocks, etc.)

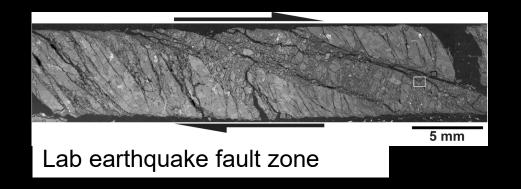
Precursors to Fluid Injection Induced Earthquakes?

Fluid injection during lab earthquakes



Affinito et al., in prep, 2025





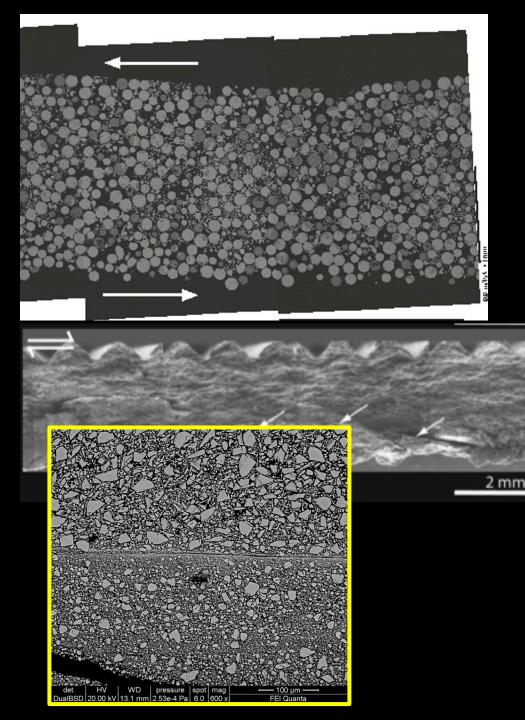
Learning Earthquake Physics from Labquakes, Data Science and Machine Learning

- 1. Lab earthquakes can be predicted with machine learning
- 2. Predictions work for both passive and active seismic data
- 3. Explainable ML. The physics of lab earthquakes are consistent with rate and state friction constitutive laws
- 4. Applications of ML/DL models to seismic data

Elisa Tinti, Cristiano Collettini, Fabio Galasso, Laura Laurenti, Gabriele Paoletti, Parisa Shokouhi, Michele Magrini, Francesco Marrocco, Paul Johnson, Bertrand Rouet-Leduc, Claudia Hulbert, Srisharan Shreedharan,

SCHATZALP DAVOS 18-21 March 2025

Grazie



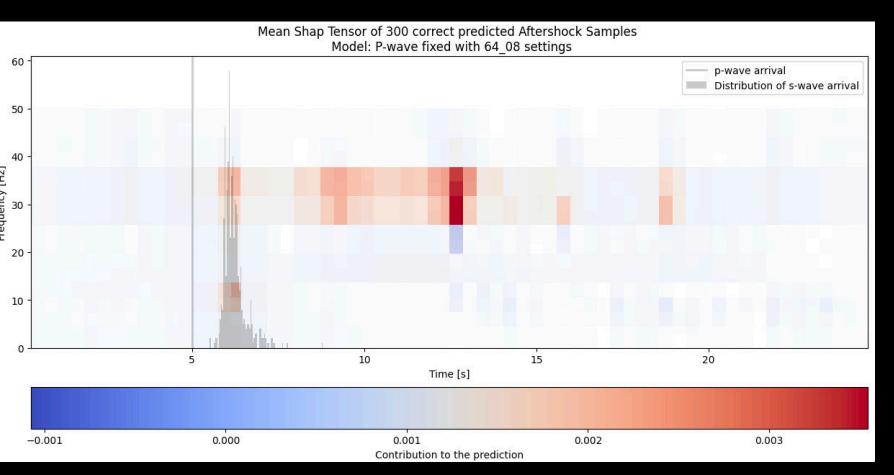
Summary

Machine learning works for the cases we have studied, but that's a small set. There are many unanswered questions

Lab faults studied

- Glass beads
- Granular layers of angular quartz grains
- Granular layers of quartz powder
- Bare granite surfaces
- Granite surfaces dusted with powder
- Fracture of granite blocks
- Mixtures of clay and quartz
- Limited range of fluid pressures

SHAP Shapley Additive Explanations

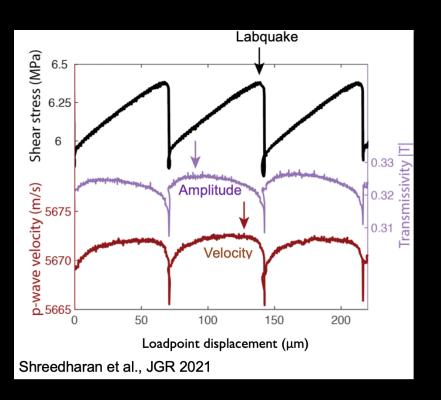


Explainable Machine Learning

Proxy for fault zone stress state

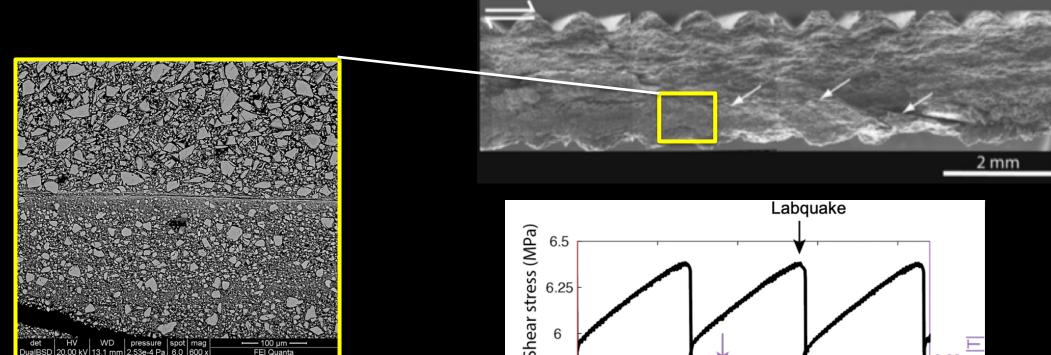
Magrini, Marrocco et al., in prep, 2025

Labearthquake Precursors, Labquake Prediction and Machine Learning to Build Proxies for Fault Zone Stress State

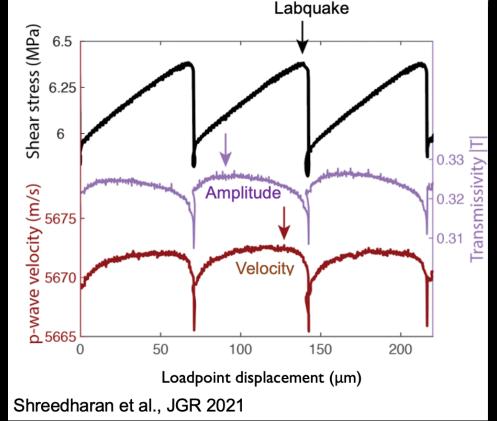


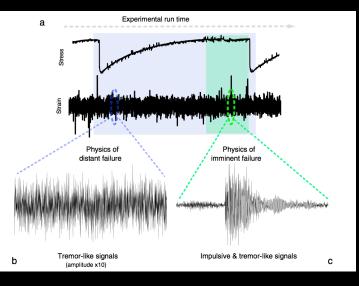
- Machine learning (ML) can predict lab earthquakes. Explainable ML.
- PINN for predicting the evolution of fault zone elastic properties during the lab seismic cycle.
- Applications of ML/DL to seismic data, distinguishing foreshocks from aftershocks
- Foundation models for seismic data processing

Explainable Machine Learning



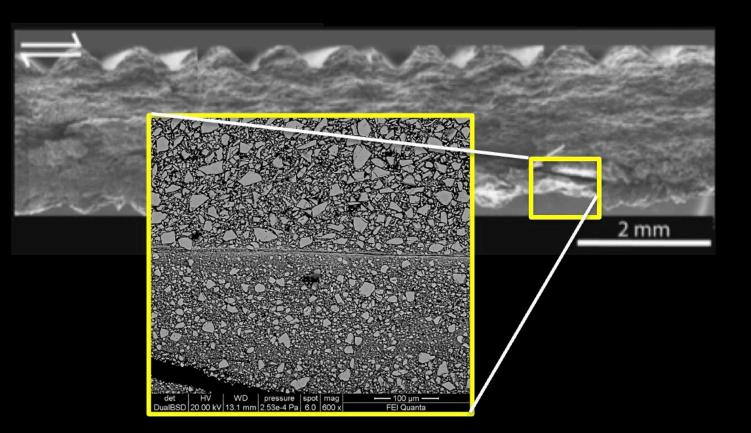
Contacts Age and Fractures Form During the lab Seismic Cycle

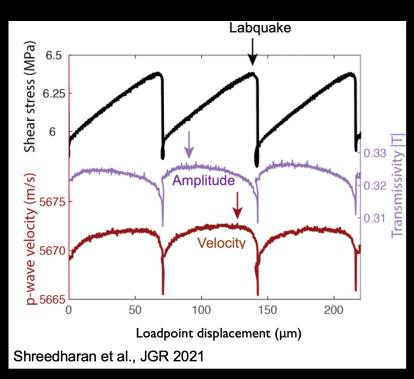




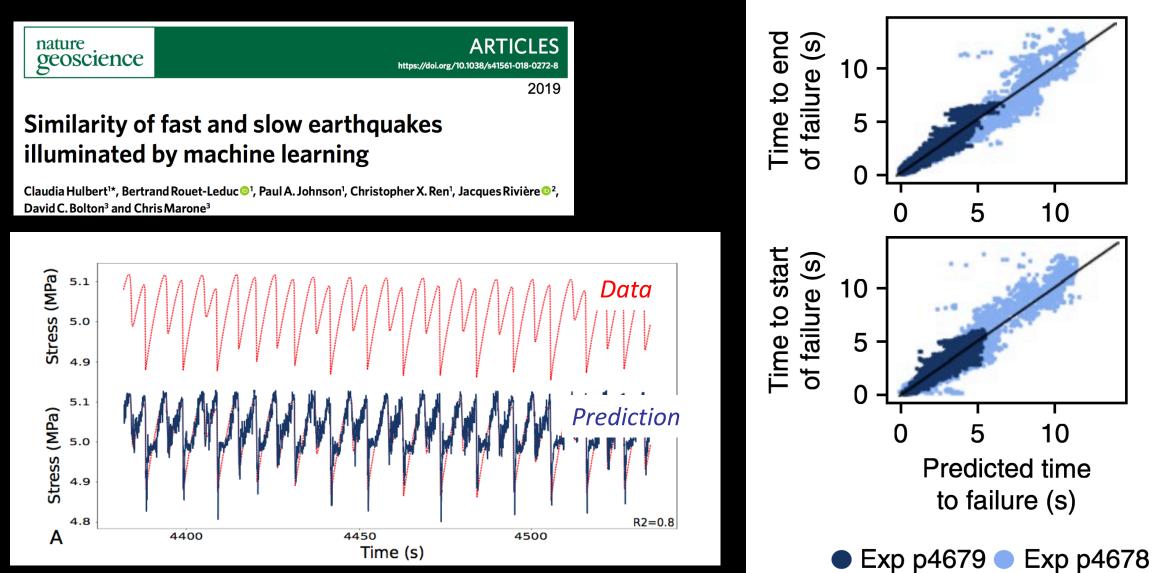
Labquake prediction

- Microearthquake Precursors in the Fault Zone
- Evolution of fault Zone Elastic Properties





Labquake Prediction for the Full Spectrum of Slip Modes from slow to fast

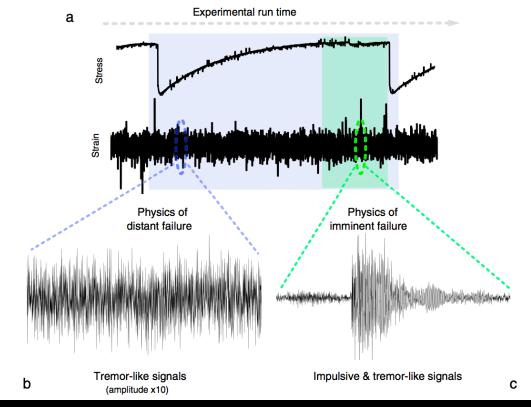


Hulbert et al., 2019

Labquake Prediction for the Full Spectrum of Slip Modes from slow to fast

Prediction

- Timing
- Size (stress drop, fault slip velocity)
- Fault Zone Stress
- Location



Rouet-Leduc et al., 2017

nature communications

Article

Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes

Received: 8 December 2022

Accepted: 7 June 2023

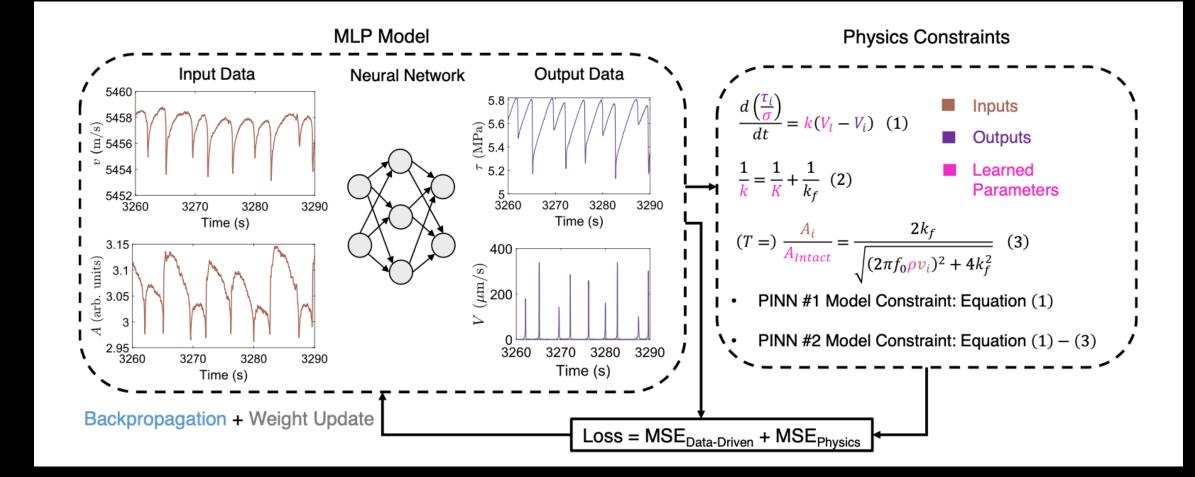
Prabhav Borata¹, Jacques Rivière¹, Chris Marone^{2,3}, Ankur Mali ©⁴, Daniel Kifer⁵ & Parisa Shokouhi © $^1 \boxtimes$

6

https://doi.org/10.1038/s41467-023-39377-6

Loss function based on

- Fault zone elastic parameters (V_p, V_pAmplitude)
- RSF: relating fault zone slip velocity to local stiffness and frictional shear strength



nature communications

Article

Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes

Received: 8 December 2022

Accepted: 7 June 2023

Prabhav Borate¹, Jacques Rivière¹, Chris Marone^{2,3}, Ankur Mali^{® 4}, Daniel Kifer⁵ & Parisa Shokouhi^{® 1}⊠

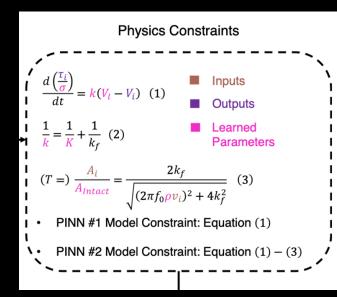
6

https://doi.org/10.1038/s41467-023-39377-6

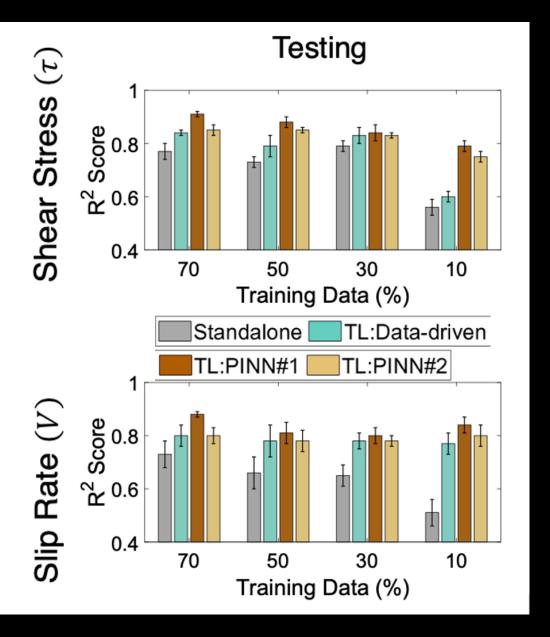
Loss function based on

- Fault zone elastic parameters (V_p, V_pAmplitude)
- RSF: relating fault zone slip velocity to local stiffness and frictional shear strength

$$L_1(\theta) = \frac{1}{N} \sum_{i=1}^N \left(\tau_i(u_i) - \hat{\tau}_i(u_i;\theta) \right)^2 + \frac{1}{N} \sum_{i=1}^N \left(V_i(u_i) - \hat{V}_i(u_i;\theta) \right)^2 + \frac{1}{N} \sum_{i=1}^N \left(\hat{f}_1(u_i;\theta) \right)^2$$

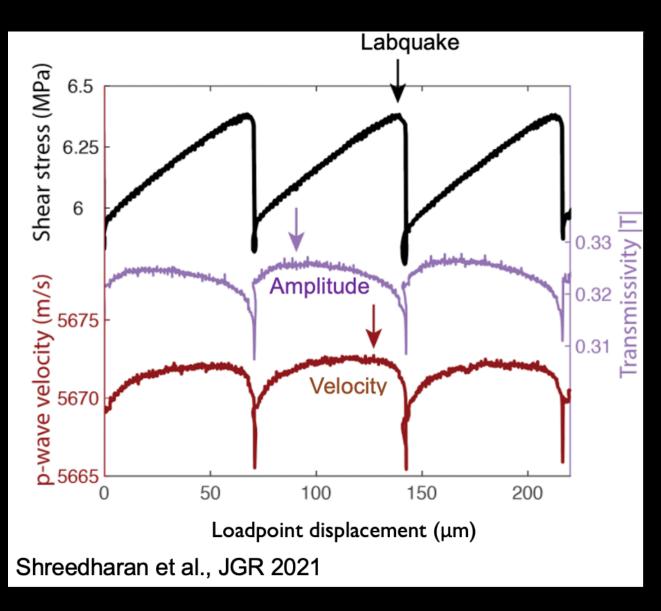


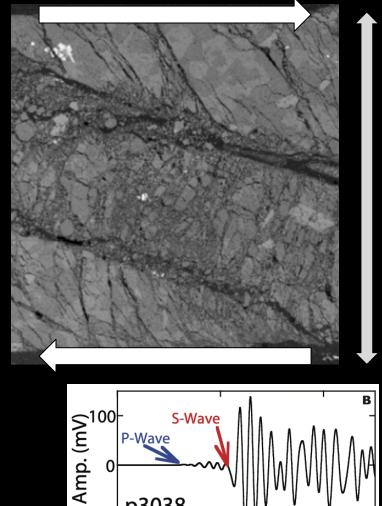
Explainable Machine Learning: Generalizable Models



Borate et al. Nat. Comm. 2023

Explainable Machine Learning Lab Earthquake Prediction and Rate/State Friction





_p3038

@ 6.44 mm shear

20

Flight Time (µs)

40

-100

3 mm