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Learning Earthquake Physics from Labquakes, Data Science and
Machine Learning

Main industrial activities which can "induce” or "trigger” seismicity
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Repetitive stick-slip events: lab earthquakes as a tool for earthquake physics

Explainable Machine Learning

100's of lab earthquakes in each
experiment

Shear Stress (MPa)

e Carefully controlled conditions

_Load Point Displacement (mm)

e Systematic changes in behavior for small
changes in control parameters
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Repetitive lab earthquakes, Physics of Earthquake Precursors
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Labquake

Shear stress (MPa)

Amplitude

;

Velocity

wn
~
E
>,
£
o
o
]
>
)
>
©
Z
o

5665
0 50 100 150

Loadpoint displacement (um)
Shreedharan et al., JGR 2021

| WD pressure |
DualBSD [20.00 kV[13.1 mm|2.53e-4 Pa| 6.0 600 x| FE| Quanta




Evolution of b-value during the seismic cycle: Insights from laboratory
experiments on simulated faults

J. Riviére #>*, Z. LvP, PA. Johnson ¢, C. Marone”

31 August 1973, Volume 181, Number 4102 SCIENCE

The Dilatancy Model

Observations for a number of earth-
quakes made at Garm, U.S.S.R., and
in the New York Adirondacks and
observations of the San Fernando

Earthquake Prediction: earthquake show that, prior to each of

these earthquakes, the ratio of seismic

. .
0 8 L A PhyS[Cal BaS]S velocities vp/vg decreased to anoma-
. lously low values. In each of these
3000 3020 cases, earthquakes occurred shortly
Rock dilatancy and water diffusion may explain a after the return of v;./v to its normal

value.
large class of phenomena precursory to earthquakes. Nur (4) and Aggarwal et al. (2)
independently put forward a model
that would explain this phenomenon.
Christopher H. Scholz, Lynn R. Sykes, Yash P. Aggarwal The model is based on laboratory
fracture studies which show that rock
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Geophysical Research Letters

RESEARCH LETTER
10.1002/2017GL074677

Key Points:

« Machine learning appears to
discern the frictional state when
applied to laboratory seismic data
recorded during a shear experiment

« Machine learning uses statistical
characteristics of the recorded
seismic signal to accurately
predict slip failure time

» We posit that similar machine learning
approaches applied to geophysical
data in Earth will provide insight in
fault frictional processes

Supporting Information:
= Supporting Information S1
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Machine Learning Predicts Laboratory Earthquakes

Bertrand Rouet-Leduc’?, Claudia Hulbert’, Nicholas Lubbers'3, Kipton Barros’,
Colin J. Humphreys?, and Paul A. Johnson*
1Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, NM, USA, 2Department of Materials Science

and Metallurgy, University of Cambridge, Cambridge, UK, 3Department of Physics, Boston University, Boston, MA, USA,
4Geophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract we apply machine learning to data sets from shear laboratory experiments, with the goal of
identifying hidden signals that precede earthquakes. Here we show that by listening to the acoustic signal
emitted by a laboratory fault, machine learning can predict the time remaining before it fails with great
accuracy. These predictions are based solely on the instantaneous physical characteristics of the acoustical
signal and do not make use of its history. Surprisingly, machine learning identifies a signal emitted from the
fault zone previously thought to be low-amplitude noise that enables failure forecasting throughout the
laboratory quake cycle. We infer that this signal originates from continuous grain motions of the fault gouge
as the fault blocks displace. We posit that applying this approach to continuous seismic data may lead to
significant advances in identifying currently unknown signals, in providing new insights into fault physics,
and in placing bounds on fault failure times.

Rouet-Leduc et al., 2017



Lab earthquakes are predictable
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Lab earthquake prediction State Of The Art

nature communications 2023

Article https://doi.org/10.1038/s41467-023-39377-6

Using a physics-informed neural network
and fault zone acoustic monitoring to
predict lab earthquakes

Deep Learning Methods to measure the
evolution of fault zone elastic properties
during the lab seismic cycle

Received: 8 December 2022 Prabhav Borate', Jacques Riviére', Chris Marone?2, Ankur Mali ® %, Daniel Kifer® &

Parisa Shokouhi ®'
Accepted: 7 June 2023

Nature scientific reports 2024
Physics informed neural network

p3038 can retrieve rate and state

6.44 mm sh ot '
@044 mm shear n friction parameters from acoustic

Flight Time (us) monitoring of laboratory stick-slip
experiments

Prabhav Borate?, Jacques Riviérel, Samson Marty?, Chris Marone3*, Daniel Kifer® &
Parisa Shokouhi™
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Physics Constraints

Inputs
Outputs

Learned
Parameters

(3)

A,
Amcac J(Znﬁ,;.=,.)2+4kf
PINN #1 Model Constraint: Equation (1)

Explainable Machine Learning

Active acoustic studies of the lab
seismic cycle

Equivalent sphere with E*
and R,

Spherical contact, Ry, =
Hw: Ry, Ray = sz =R;

—>

Equivalent sphere of radius
R.=R;R./( Ry=Ry)

Rigid half-space surface

JKR contact theory
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Tattersall, 1973



Physics Constraints Explainable Machine Learning

m inputs Rate/State Friction and Contact Aging

Outputs

Learned
Parameters Contact Age = Frictional State
(3)

and R,

Spherical contact, Ry, =
Riy=Rq Rox=Roy =Rz

‘:‘ : "
,J

Equivalent sphere of radius
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Machine learning:
Evolution of fault zone elastic properties to predict shear stress and time to failure

Training Validation Testing

Experiment p5270 7

R

XGBoost | I l _| :
| ' ' I |
|

(b) & (d); (L)&( 2)

A -
-
w5
72,
]
=
w
-;3
£
v

MLP
_|——Ls™
5

2200 2 20( 2800
Time (8)

or

Shear Su:css (MPa)

I

Residual err

3185 3190 3195

Time (s) Shokouhi et al. GRL 2021




Explainable Machine Learning: Generalizable Models

p5270 Dataset
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nature communications

Article

. . Application to TECTONIC faults
Probing the evolution of fault properties

during the seismic cycle with deep learning
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2016 Norcia Earthquake M6.5
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Machine Learning Model
Binary Classification of Foreshocks and

Aftershocks

2 classes
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Toward a prediction of time to failure

9 classes

FEQ1 FEQ2 FEQ3 FEQ4 Visso AEQ1 AEQ2 AEQ3 AEQ4
Actual values

9 classes

Number of traces

|‘ ||‘I |“ |“|‘\' Tl h |“I ||l| “| “‘
[ Tl T T | i
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Oct Nov Dec

[ Training set [ Validation set B Testing set ---- Norcia Mw 6.5

Laurenti et al., 2024

CNN with batch normalization and RelLU activation layer.
The network has 7 convolutional layers with an increasing
number of filters up to a maximum of 256 in the last two

convolutional blocks
18



Explainable Machine Learning
How does it work?

Kilometers

Norcia fault

Norcia Mw 6.5
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Spectrograms to create images for a CNN

SHAP on waveform and spectrogram
label: Foreshock, trace_name = NRCA.IV.100589713_EV,
date = 2016-08-24T03:00:51.240000Z (week: 0)

* s-wave arrival

Frequency [Hz]

Time [s]

Magrini, Marrocco et al., in prep, 2025
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Explainable Machine Learning

SHAP  Shapley Additive Explanations

Mean Shap Tensor of 300 correct predicted Aftershock Samples

Proxy for fault zone stress state
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Summary

ML/DL models can predict lab earthquakes
Explainable ML can teach us earthquake physics

We have studied simple conditions
(room temp., limited set of fault rocks, etc.)

B g ¥ G - .:g i
ety v e W Sy g TR X
o o %é. o
A S s % _..1 7%? e
L1 B P e iaty it
& & S 2 2 mm
5 AR By N i —
; 4 eIy gtnany L TE
7] < [t 3
= 3 Loy %
5 3 3 :
= ’ '..g AN pr:
# o e
._ : -k 2 5
ST g S
&I R -
SEAY B e : .
A W TR o
PR e
Sat el % E he”
S ik v o
_i,h—- S R 2 RO 3
e iy :
Rea s S : 4 e
e ‘\;'fl/."‘ EREAIS i w13 Gt
. Rssee 1,,% o
B Sk WA foto it R SLR T g Wi P ? oy
i R @ﬁ%ﬁ P on ity bl
det HV WD | pressure |spot| mag —— 100 pm ——
DualBSD |20.00 kV[13.1 mm|2.53e-4 Pa| 6.0 |600 x|

22



Precursors to Fluid Injection Induced Earthquakes?

Main industrial activities which can “induce" or "trigger”" seismicity

Fluid injection during lab earthquakes

Grigoli et al., 2017

1 0.00

-0.01

Lab earthquake fault zone

17.00 17.05 17.10 17.25
Load Point Displacement [mm]

Affinito et al., in prep, 2025
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Learning Earthquake Physics from Labquakes, Data Science and
Machine Learning

1. Lab earthquakes can be predicted with machine
learning

2. Predictions work for both passive and active seismic G raz I e

data

3. Explainable ML. The physics of lab earthquakes are
consistent with rate and state friction constitutive laws

4. Applications of ML/DL models to seismic data

Elisa Tinti, Cristiano Collettini, Fabio Galasso, Laura
Laurenti, Gabriele Paoletti, Parisa Shokouhi, Michele

Magrini, Francesco Marrocco, Paul Johnson, Bertrand S C HAT ZALP

Rouet-Leduc, Claudia Hulbert, Srisharan Shreedharan, DAVOS
18-21 March 2025




2 mm

Summary

Machine learning works for the cases we have
studied, but that’s a small set.
There are many unanswered questions

Lab faults studied

* Glass beads

« Granular layers of angular quartz grains
» Granular layers of quartz powder

« Bare granite surfaces

» Granite surfaces dusted with powder

* Fracture of granite blocks

» Mixtures of clay and quartz

» Limited range of fluid pressures

25



SHAP  Shapley Additive Explanations

Explainable Machine
Mean Shap Tensor of 300 correct predicted Aftershock Samples .
Model: P-wave fixed with 64 08 settings Lea r'n I n g

p-wave arrival
Distribution of s-wave arrival

Proxy for fault zone
stress state

10 15 20

R

0.000 0.001 0.003

Contribution to the prediction

Magrini, Marrocco et al., in prep, 2025
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Labearthquake Precursors, Labquake Prediction and
Machine Learning to Build Proxies for Fault Zone Stress State

 Machine learning (ML) can predict lab earthquakes.
Explainable ML.

Labquake

Shear stress (MPa)

* PINN for predicting the evolution of fault zone
T P ApIIIE elastic properties during the lab seismic cycle.
5675 ‘L |

5670 Velocity * Applications of ML/DL to seismic data,
distinguishing foreshocks from aftershocks

)
~
E
>
=
]
o
@
>
@
>
©
2

P

5665
0 50 100 150

Loadpoint displacement (pum)

e * Foundation models for seismic data processing




Explainable Machine Learning

Labquake
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Labquake prediction
* Microearthquake Precursors in the Fault Zone
* Evolution of fault Zone Elastic Properties

Physics of Physics of
distant failure imminent failure

AR

Tremor-like signals Impulsive & tremor-like signals
(amplitude x10)

Labquake
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Labquake Prediction for the Full Spectrum of Slip Modes from slow to fast

nature ARTICLES
geo S C 1 ence https://doi.org/10.1038/541561-018-0272-8

2019

Similarity of fast and slow earthquakes
illuminated by machine learning

Time to end
of failure (s)

Claudia Hulbert™, Bertrand Rouet-Leduc ®', Paul A.Johnson', Christopher X.Ren', JacquesRiviére ©2,
David C. Bolton? and Chris Marone?®
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Prediction

* Timing

e Size (stress drop, fault slip
velocity)

* Fault Zone Stress

Experimental run time

0
7
£
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[75]

Physics of Physics of
distant failure imminent failur

Tremor-like signals Impulsive & tremor-like signals
itude x10

b

Rouet-Leduc et al., 2017

Labquake Prediction for the Full Spectrum of Slip Modes from slow to fast

c
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Loss function based on
Using a physics-informed neural network * Fault zone elastic parameters (V,, V Amplitude)
and fault zone acoustic monitoring to . : : : :
predict lab earthquakes * RSF: relating fault zone slip velocity to local stiffness
and frictional shear strength

Received: 8 December 2022 Prabhav Borate', Jacques Riviére', Chris Marone?3, Ankur Mali ® %, Daniel Kifer® &
Parisa Shokouhi ®"

Accepted: 7 June 2023
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nature communications

Loss function based on

Article https://doi.org/10.1038/41467-023-39377-6

Using a physics-informed neural network network * Fault zone elastic parameters (Vp, VpAmplitude)
RSF: relating fault zone slip velocity to local stiffness
and frictional shear strength

and fault zone acoustic monitoring to o
predict lab earthquakes

Received: 8 December 2022 Prabhav Borate', Jacques Riviére', Chris Marone?3, Ankur Mali ® %, Daniel Kifer® &

Parisa Shokouhi ®"
Accepted: 7 June 2023
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Explainable Machine Learning: Generalizable Models
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Explainable Machine Learning
Lab Earthquake Prediction and Rate/State Friction

—_ v 3 b\ -ﬂ‘q . 'I'I 3 .' L g rt, : - ; e b

© L N N P iy
a e e Y . |
= - 4 ¢
P Ay =

$ 1 _'lﬁ ! > R

- w X

4= L o

v -'."..* P ¢

© s A
E aT e _.
A 4 /AT

5675

Velocity

W
>
N
o

0
S~
E
>
=
U
L)
]
>
w
>
©
=

A 5665
0 50 100 150

Loadpoint displacement (um)
Shreedharan et al., JGR 2021

20
Flight Time (us)

3 mm



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

