ETHzurich Y B

MELBOURNE

Concept of fracture displacement basis functions (FDBF)
for fast geomechanical simulations of fractured rock

Giulia Conti', Stephan Matthai2, Patrick Jenny
Institute of Fluid Dynamics, ETH Zurich; 2Department of Infrastructure Engineering, University of Melbourne

1 Motivation 4 Results
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2 Method Overview
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Displacement field u(x) and stress field o(x) are described as a super- to their non-elliptical = \“ D o im A
position of N weighted fracture specific basis functions (BF) : profiles. Nevertheless, e L : i S N S S S 1
the displacement fields fkn] /fm)
far field influence far field influence remain similar, demon- EDER “‘[7”"1 EDES “2[””;)]0 - Fracture 2.
/ strating that FDBF - o0 400
u(x) = Z uf(x) + u®(x) o(x) = Z 3f(x) + 0°° (x) provides a reliable ” ’ v 2
approximation. - 0 @
- - 0 0 ‘24"]0 400 660 800 1000
shear sllp fracture specific BF ref. pressure / ref. length fracture specific BF 2/fm)]

] , N N 33-fracture pattern
1. Find normalized BF ig;,(x) and @, (x) for rock parameters 1 and
. livtical sli file. Sol f f _ d The FDBF simulation has just 66 degrees of freedom, whereas XFVM has 8'006°358. It efficiently
G assuming an ellipucal shp prorie. solve for u irom V-6=0 an approximates shear slip, displacement, and stress fields. Once the basis functions are computed,
linear elasticity ¢ =A(V-uw)I + G(Vu+Vu’). The normalized BF FDBF can evaluate different stress states in seconds.
must be computed only once for a specific set of rock parameters.
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2. Calculate fracture specific BF as simple transformations of the H . N //\\\\
. \\ 100

normalized BF: H
T —2f 7 5
@/ (®) = Rlgp (M) &/ (¥) = Ry <R—(x al )> R &

Lf Lf

-50
[km)]

3. Define interaction coefficients from traction and normal influence of

stress field 6/ induced by fracture f on fracture g : 5C S
onciusion
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FDBF is an efficient method for calculating shear displacement and
4. Check shear displacement criteria. If o, > u(a,, —p ), then seek tensile opening of interacting fractures.
N = .
f 59 dl:f w(of —p9)dl  with f 9 dl:z(s ol79) + 0% * Reduces problem to a 2N X 2N matrix equation (N = number of
' " o L fractures). Promising for large-scale rock displacement simulations.
Solve N x N matrix equation, where N is the number of fractures: * Good agreement with Abaqus and XFVM.
(@ l-podZt) o (@NL = po Y\ [ Fo=Lp) Current and future work:
((Utm B wo i) (o_tN—w_:#Urrlv—w))< N> <f(gﬁw'p)> + Accuracy improvement with additional basis functions and degrees
of freedom for non-elliptical profiles, e.g., for intersecting fractures.
Same procedure for tensile opening, but with criteria o, = 0 and a;, = p, + Retains efficiency in 3D: 2 degrees of freedom per fracture for shear,
which leads to a 2Nx2N matrix equation. 1 for tensile opening.
* Coupling with flow and transport.
3 Simulation Setup
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