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Introduction
Modeling the coupled processes of poromechanics
(poro-elasto-plastic rheology) and two-phase �u-
ids is crucial for understanding complex subsur-
face phenomena, including phase redistribution,
deformation-induced �ow dynamics, and mechan-
ical instabilities. This study presents a high-
performance computational framework that inte-
grates quasi-static Biot equations with compressible
two-phase transport and frictional plasticity. The
model captures large-strain poro-elastoplastic be-
havior, and capillary pressure e�ects. To e�ciently
solve this coupled system, we employ a conserva-
tive �nite-volume discretization combined with an
accelerated pseudo-transient (APT) iterative solver,
optimized for GPU architectures, achieving signi�-
cant computational gains in large-scale simulations.
Our results reveal the intricate interplay between
mechanical deformation and �uid �ow, capturing
pressure evolution, strain localization, and satura-
tion front propagation under varying conditions.

Symmetric conditions
In accordance with the general principles of thermo-
dynamics, the coe�cient matrix that governs the re-
lationships between the divergences of solid velocity
and Darcy �uxes with the time derivatives of pres-
sures must be symmetric. Enforcing this symmetry
leads to the following conditions:
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These equations ensure the symmetry of the result-
ing 3×3matrix, which is presented below. The sym-
metry condition is essential for the consistency of
the coupled system, preserving the thermodynam-
ically admissible structure of the governing equa-
tions. The total �uid pressure derivative is:
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Note that such formulation of the total �uid pres-
sure provides us with a simple matrix of coe�cients
that relate pressures and divergences

Model Setup
We employ the quasi-static Biot's poroelastic equations [1] to describe coupled porous-media two-phase
�ow and deformation. The governing equations include:
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By substituting the expressions for the time derivatives of densities and porosity into equations for
divergences ∇jv

s
j , ∇jq

Dt
j , we obtain the following system of equations for compressibilities:
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where
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Fluid �ow within the porous medium follows Darcy's law for two-phase �ow:
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The system is solved using an Accelerated Pseudo-Transient (APT) Method, a matrix-free iterative solver
that ensures convergence to quasi-static solutions [2].

Numerical Simulations

Figure 1: Two-dimensional simulation results illustrating strain localization and �uid redistribution. (a) Minus
volumetric stress (total pressure). (b) Integrated stress evolution. (c) Fluid saturation Sw. (d) Fluid pressure Pw.
(e) 1D saturation pro�le at one-third of the domain height. (f) 1D �uid pressure (red) and oil pressure (green).
(j) Capillary pressure pro�le. Results show a clear shear band where total pressure, �uid pressure, and capillary
pressure drop, while �uid saturation and porosity increase. Advection-driven �ow dominates transport due to �uid
pressure gradients.

3D Numerical Simulations

Figure 2: Fluid pressure evolution in settings close to
the Pohang earthquake [3].

Performance
The solver demonstrates exceptional GPU perfor-
mance: Achieves 120× acceleration over CPU-
based methods [4]

Conclusion
We present a high-performance numerical frame-
work for fully coupled two-phase �ow and poro-
elasto-plasticity, leveraging GPU acceleration to en-
able large-scale simulations with high spatial and
temporal resolution. The model integrates large-
strain mechanics and capillary pressure e�ects, al-
lowing for the accurate representation of �uid redis-
tribution, strain localization, and poromechanical
deformation.
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