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Introduction

Modeling the coupled processes of poromechanics
(poro-elasto-plastic rheology) and two-phase flu-
ids is crucial for understanding complex subsur-
face phenomena, including phase redistribution,
deformation-induced How dynamics, and mechan-
ical instabilities.  This study presents a high-
performance computational framework that inte-
grates quasi-static Biot equations with compressible
two-phase transport and frictional plasticity. The
model captures large-strain poro-elastoplastic be-
havior, and capillary pressure eflfects. To efficiently
solve this coupled system, we employ a conserva-
tive finite-volume discretization combined with an
accelerated pseudo-transient (APT) iterative solver,
optimized for GPU architectures, achieving signifi-
cant computational gains in large-scale simulations.
Our results reveal the intricate interplay between
mechanical deformation and fluid flow, capturing
pressure evolution, strain localization, and satura-
tion front propagation under varying conditions.

Symmetric conditions

In accordance with the general principles of thermo-
dynamics, the coefficient matrix that governs the re-
lationships between the divergences of solid velocity
and Darcy fluxes with the time derivatives of pres-
sures must be symmetric. Enforcing this symmetry
leads to the following conditions:
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These equations ensure the symmetry of the result-
ing 3 x 3 matrix, which is presented below. The sym-
metry condition is essential for the consistency of
the coupled system, preserving the thermodynam-
ically admissible structure of the governing equa-
tions. The total fluid pressure derivative is:
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Note that such formulation of the total fluid pres-
sure provides us with a simple matrix of coeflicients
that relate pressures and divergences
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Model Setup

We employ the quasi-static Biot’s poroelastic equations |1| to describe coupled porous-media two-phase
fHlow and deformation. The governing equations include:
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By substituting the expressions for the time derivatives of densities and porosity into equations for
divergences V ;v7, qujp t, we obtain the following system of equations for compressibilities:

Vkv,i

= — 4
Viqr?

o — 6d_/88 58_5d
Ba (Bs — Br1)op1 + (Bs — Bra)pr2 — Ba+ Bs

Fluid flow within the porous medium follows Darcy’s law for two-phase flow:
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The system is solved using an Accelerated Pseudo-Transient (APT) Method, a matrix-free iterative solver
that ensures convergence to quasi-static solutions [2|.

Numerical Simulations
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Figure 1: Two-dimensional simulation results illustrating strain localization and fluid redistribution. (a) Minus
volumetric stress (total pressure). (b) Integrated stress evolution. (c¢) Fluid saturation S,. (d) Fluid pressure P,,.
(e) 1D saturation profile at one-third of the domain height. (f) 1D fluid pressure (red) and oil pressure (green).
(j) Capillary pressure profile. Results show a clear shear band where total pressure, fluid pressure, and capillary
pressure drop, while fluid saturation and porosity increase. Advection-driven flow dominates transport due to fluid
pressure gradients.
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3D Numerical Simulations
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Figure 2: Fluid pressure evolution in settings close to
the Pohang earthquake [3].

Performance

The solver demonstrates exceptional GPU perfor-

mance: Achieves 120x acceleration over CPU-
based methods [4]

Conclusion

We present a high-performance numerical frame-
work for fully coupled two-phase flow and poro-
elasto-plasticity, leveraging GPU acceleration to en-
able large-scale simulations with high spatial and
temporal resolution. The model integrates large-
strain mechanics and capillary pressure effects, al-
lowing for the accurate representation of fluid redis-
tribution, strain localization, and poromechanical
deformation.
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