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Introduction
• Seismic events possibly related to EGS have seriously 

affected/terminated some geothermal projects

• Implementation of safe stimulation strategies is critical for 
public acceptance of EGS projects

This study
• Near-realtime seismic monitoring allowed managing 

hydraulic energy input and avoid project-stopping M2.1 
event during stimulation of a 6.1 km-deep geothermal well 
near Helsinki, Finland
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St1 Deep Heat project

Located in Helsinki suburbian area (Aalto University, Espoo)

Provide sustainable baseload for the campus-area district 
heating network



Project site
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• Well OTN-3: 6.4 km MD

• Open bottom-hole 1000 m inclined at 45°

• Target formations at 5.1-6.1 km depth 
with bottom hole temperature 120°C

• Simple geology

– 10 m sedimentary overlay

– precambrian granites, gneisses, amphibolites

• Complex small-scale tectonic structures

(folded, foliated, jointed, faulted...)

– Broad steeply dipping damage zones trending 
SE-NW (drilling problems)

– FZ 8km away (M2.6), Inactive TF 1.5km away
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OTN-3 stimulation campaign in June-July 2018

• Five stimulation stages 
selected using borehole logs

• Continuous stimulation of 
selected stages: 
49 days
Water injected:
18,500 m3

Well head pressures: 
60-90 MPa 
Injection rates:
400-800 l/min

TLS RED M 2.1 

Comparison:

Cooper Basin: 20,000 m3

Basel: 11,500 m3



Controlling Fluid-Induced Seismicity during a 6.1-km-Deep Geothermal Stimulation in Finland | Schatzalp 2019 workshop on Induced Seismicity

Seismic activity during stimulation campaign

6,152 located in the vicinity of the project site 
with magnitude estimate within 5 minutes after 
occurrence TLS system

+10 minutes with manual refinement 

St1: Mmax 1.9 @ 18,500m3 injected

No project-stopping red alert (MLHEL 2.1) 

Cooper Basin: Mmax 3.7 @ 20,000 m3

Basel: Mmax  3.4 @ 11,500 m3

Postprocessing:

Pick/amplitude pattern matching: 

+40,000 events (MLHEL>-1.21)

DD relocation: ~2000 events 

(rel. precision 66-27m for 95%-68% of dataset)

Stimulation 
phase
 Phase 1 
 Phase 2 
 Phase 3  
 Phase 4
 Phase 5
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Seismicity during stimulation

• Three major clusters activated simultaneously
• No spatiotemporal correlation injection ports-seismicityleak bypassing stage packers near borehole
• Downward migration, propagation of seismicity along SE-NW subparallel to the direction of SH

MAX
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Controlling induced seismicity (Phase P1)

• Seismic activity occurs immediately after 75 MPa of WHP is exceeded no Kaiser effect

• Seismic energy release proportional to the hydraulic energy (P*V) 

• Quick reduction of seismic activity after injection subphases

P1
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Controlling induced seismicity (Phase P2)

• Change in injection strategy led to accelerated seismic moment release

• Series of large events forced premature finish of P2

• Stimulation stopped for a few days. 

P1

P2
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Controlling induced seismicity (Phase P2)

• Increase of Mmax with cumulative injected fluid volume. Trend following Galis et al. (2017).

Mmax,arr depends on amount of stored elastic (~hydraulic) energy available for rupture propagation

Modified injection strategy: Reduce the amount of stored energy!

P2

P1
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Controlling induced seismicity (Phase P3 P4 P5)

• P3: Reduction of WHP to < 90 MPa, 

• P4-P5: Changing injection plan: up to 18 hrs injection / up to 12 hrs resting period, direct reaction on 
accelerating seismicity and occurrence of large eventsStabilized injection efficiency

𝐼eff = Τ𝐸0 𝐸𝐻

P3

P4

P5

P2

P1
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Successful control of Mmax likely due to:
• Adaptive injection strategy guided by real-time seismic 

monitoring - limiting hydraulic energy input rate.

• Possible favorable stress conditions, and geological 
basement structures of the reservoir

• ...Fortune favours the brave
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Re-activation of distributed fracture network (1)

• DD relocated data provides no evidence for alignment of seismicity along a large fault

• Damage zones visible in available engineering (log) and geological data

• Significant drop-off in the number of events above M>1.5
No faults large enough to sustain larger events? Faults can’t store enough elasting energy to support a runaway rupture? 

• Seismic injection efficiency suggest reactivation of limited fracture network
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Re-activation of distributed fracture network (2)

• Seismicity shows no evidence for alignment along a large fault

• Damage zones visible in available engineering and geological data

• Significant drop-off in the number of events above M>1.5
No faults large enough to sustain larger events? Faults can’t store enough elastic energy to support a runaway rupture? 

• Seismic injection efficiency suggest reactivation of limited fracture network

GR distribution complexity testing following Lasocki and Papadimitriou, JGR, 2006



Controlling Fluid-Induced Seismicity during a 6.1-km-Deep Geothermal Stimulation in Finland | Schatzalp 2019 workshop on Induced Seismicity

Low stress perturbation (1)

• Lower background tectonic stresses
• No pronounced clusteringminor triggering? minor stress transfer?
• Relatively rapid dissipation of injected hydraulic energy
• Stationary b-value in later injection phases – no change in deviatoric stress ?
• Hazard seemingly controlled by GR a-value changes

88% background 
seismicity 

Catalog

Reshuffled catalog used to select 
separation level between clustered

and background seismicity

12% clustered 
seismicity

Clustering procedure: Baiesi and Paczuski, Phys. Rev. E, 2004; Separation clustered-background: Davidsen et al., PRL, 2017
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Low stress perturbation (2)

• Lower background tectonic stresses than at other sites (Basel, Pohang)
• No pronounced clusteringminor triggering? limited stress transfer?
• Relatively rapid dissipation of injected hydraulic energy
• Stationary b-value in later injection phasesno change in deviatoric stress? (Scholz, 1968)
• Hazard seemingly controlled by GR a-value changes

b-value stationarity: ADF test (Dickey and Fuller, J. Am. Stat. Assoc, 1979) 
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Summary and conclusions
• Project stopping MLHEL2.1 earthquake was successfully avoided by 

adapting injection operations using near-realtime monitoring of 
induced earthquake rates, locations, magnitudes, and evolution of 
seismic and hydraulic energy

• Fluid injection was likely performed into a complex fracture/fault 
network leading to low stress perturbation.  No major faults are 
known/were found in the reservoir

• Successful operation required close cooperation of seismologists, 
site operator, TLS team and local authorities during stimulation

• The outcome of the St1 DH project may indicate a possible 
approach allowing to manage induced seismicity in similar 
geothermal projects



Thank you very much for your 
attention!

Contact:

Grzegorz Kwiatek
kwiatek@gfz-potsdam.de

https://induced.pl/about

Stay tuned!

Kwiatek et al. (2019), Science Advances, in press

mailto:kwiatek@gfz-potsdam.de
https://induced.pl/about
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Spare slides
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Re-activation of distributed fracture network (3)

• Seismicity shows no evidence for alignment along a large fault

• Damage zones visible in available engineering and geological data

• Significant drop-off in the number of events above M>1.5
No faults large enough to sustain larger events? Faults can’t store enough elasting energy to support a runaway rupture? 

• Seismic injection efficiency suggest reactivation of the fracture network

𝐼eff = Τ𝐸0 𝐸𝐻

Seismic injection efficiences Goodfellow et al., GRL, 2015

Bowland Shale: 10-1

Horn River Basin 10-2

Basel 7 x 10-3

This study 3 x 10-3

Aspo laboratory 10-5

Horn River Basin 10-5

Barnett: 10-9 - 10-7

Laboratory: 10-10 - 10-7 Creation

Reactivation
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Seismic monitoring networks 

Stimulation
12 Shallow (0.3-1.3 km) borehole geophones
12 Deep (2.0-2.6 km) borehole sensors in OTN-2

TLS network
Surface 17 geophones
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Data extension and refinement

Data reprocessing

data refinement

data reduction:

– Full catalog including 
detections (~43,000 
earthquakes above M-
1.21), sometimes 
constrained to M-1.0 
due to night-day cycle > 
energy budget, b-value

– Relocated catalog using 
DD method (~1,950 
earthquakes) with 
relative location 
precision ~60 m (95% 
confidence ellipse) > 
spatio-temporal 
evolution, clustering
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Traffic Light System

• Thresholds based on PGV (critical facilities located nearby)
• All MLHEL > 1.2 reported within 20 minutes to local authorities.
• MLHEL > 2.1 Stop of the stimulation (...and waiting for approval from Finnish Authorities)
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Mechanisms
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Seismic center operation

• Performance for M>1.1 without/with manual reprocessing: 5 / 15 minutes 

OTN-2 
array

Satellite 
network

Local data center

TLS 
network

X, Y, Z, ML
estimate

+1 min

+2 min

+2 min

WWW 
catalog

dashboard

SMS 
event 
alerts

M>1.0 +10 min

Pumping team

TLS team

Manual 
review

TLS data center

PGV estimates

Seismology team
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Public response

• No complaints on ground motions during whole stimulation
• ... but nature likes to surprise us
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Public response

• Over 60 complaints related to audible earthquake signals
• Remedy: Don’t inject in the night

cc
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Detection limits

• Target: TLS (location+magnitude), tracking fracture network (optional)

• Outcome: EQs with M > -0.3 possible to locate, detection limit M  -1.4

Courtesy of fastloc GmbH


