Schweizerischer Erdbebendienst Service Sismologique Suisse Servizio Sismico Svizzero Swiss Seismological Service

Induced seismicity during the St. Gallen deep geothermal project, Switzerland: insights from numerical modeling

Dominik Zbinden, Antonio P. Rinaldi, Tobias Diehl, Stefan Wiemer

Swiss Seismological Service, ETH Zurich

July – December 2013

July 2013 – injection test

First few microseismic events \sim 80 minutes after the start of injection

14 July

Injection test (175 m³)

Time

Catalog of relocated events - Diehl et al., 2017 Pressures and injection rates - Wolfgramm (GTN), 2014

www.seismo.ethz.ch

July 2013 – acid jobs

17 July

Injection test (175 m³)

Acid stimulations (290 m³)

Time

Catalog of relocated events - Diehl et al., 2017 Pressures and injection rates - Wolfgramm (GTN), 2014

Spatial distribution of seismicity

Seismicity **several hundreds of meters** distant to the borehole

Diehl et al., 2017

Diehl et al., 2017

Induced seismicity by poroelastic stress changes

Injection-induced seismicity (Goebel and Brodsky, 2018)

Near-field: Pressure dominated Far-field: Elastic stress dominated

Hydraulic fracturing in Crooked Lake area, Central Alberta, Canada (Deng et al., 2016)

The numerical model

Hydro-mechanical simulator TOUGH-FLAC (Rutavist, 2011)

3 scenarios:

Mini fracture: $20 \text{ m} \times 250 \text{ m} \times 115 \text{ m}$ Medium fracture: $20 \text{ m} \times 500 \text{ m} \times 660 \text{ m}$ Full fracture: $20 \text{ m} \times 500 \text{ m} \times 920 \text{ m}$

Initial state of stress

 $S1 = 1.02 S_v$; $S2 = S_v = 85.3 MPa$ (3.4 km depth);

 $S3 = 0.53 S_v$ (Moeck, 2016)

S1 parallel to fracture zone (optimal for normal opening)

Hydro-mechanical coupling

Stress update in FLAC3D

 $\sigma_{ij}^{corr} = \sigma_{ij} - \alpha \Delta P \delta_{ij}$

Porosity update in TOUGH2

 $\Delta \phi = f(\alpha, \phi, K) \Delta P + \Delta \phi^{corr} \qquad (Kim et al., 2012)$

Model calibration

Data inversion with iTOUGH-PEST

- Well pressure in borehole GT-1 as data
- Inverted model parameters:
 - Fracture aperture
 - Host rock permeability
 - Fracture zone Young's modulus
 - Host rock Young's modulus

Stress-dependent fracture permeability

$$b = b_{res} + b_{max} \exp(\beta \sigma'_N)$$
 (e.g. Rinaldi and
Rutqvist, 2019)
$$\kappa_{hm} = \frac{b^3}{12s_f}$$
 (Cubic law)

Model comparison

Modelina

Mini fracture

Medium fracture

Full fracture

- Maximum pressure ($\Delta P=9$ MPa) reached after 2 hours (shut-in time)
- Pore pressure front caused by the injection reaches the fault only for the full fracture model

Conclusions

www.seismo.ethz.ch

Stress change on fault: mini fracture

Conclusions

Coulomb stress change: mini fracture

Stress change on the fault after 2 hours (shut-in)

Mini fracture vs. medium-sized fracture

Stress change on the fault after 2 hours (shut-in)

Coulomb stress change $\Delta CFS = \Delta \tau + \mu \Delta {\sigma'}_N$

www.seismo.ethz.ch

Mini fracture vs. full fracture

Modelina

Stress change on the fault after 2 hours (shut-in)

Mini fracture vs. full fracture

Modelina

Stress change on the fault after 2 hours (shut-in)

www.seismo.ethz.ch

Full fracture – hydraulic connection

Conclusions

www.seismo.ethz.ch

Gas kick and well control simulation

Observations

Modelina

TOUGH2 coupled with a geomechanical-stochastic

model (Rinaldi and Nespoli, 2017)

Catalog of relocated events - Diehl et al., 2017 Geological model after Heuberger et al., 2016 Gas kick can be modeled using the full fracture model and assuming an overpressurized gas reservoir at depth

Dominik Zbinden, Swiss Seismological Service, ETH Zurich

This work was supported by a Swiss National Science

Results Conclusions

Conclusions

Introduction

- In St. Gallen, poroelastic effects could have induced the seismicity on a remote fault ٠
- Relocated events of injection test are all **located in zones of positive Coulomb stress** change ٠
- However, Coulomb stress change through a hydraulic connection could be **about 3 orders of** ٠ magnitude higher
- Seismicity could be induced within ~1 hour if a highly permeable fracture zone is present ٠
- The timing and strength of the **gas kick could be simulated using the same fracture** zone as • a conduit
- The fractured nature of the reservoir and the potential location of the gas **support the presence** ٠

of a hydraulic connection

Thank you for your attention

2013, Stadt St.Gallen / St.Galler Stadtwerke

Schweizerischer Erdbebendienst Service Sismologique Suisse Servizio Sismico Svizzero Swiss Seismological Service

Back-up slides

Conclusions

Model calibration

Modelina

Data inversion with iTOUGH-PEST

- Well pressure in borehole GT-1 as data
- Fracture zone and host rock properties as model parameters

www.seismo.ethz.ch .

Calibrated model parameters

	Mini frac	Mini frac 30°	Medium frac	Full frac
b _{res} (μm)	5	1 7		9
b _{max} (μm)	4144	5000	4264	4599
β (MPa ⁻¹)	0.24	0.14	0.25	0.26
E _{frac} (GPa)	15.0	11.1	14.4	15.0
E _{host} (GPa)	20.0	20.0	27.1	20.0
κ_{host} (m ²)	2.1e-16	2.0e-16	1.7e-17	7.4e-18
α_{frac}	0.1	0.1	0.01	0.01
α_{host}	0.75	0.75	0.75	0.75

Fixed model parameters

	Host rock	Frac zone	Fault	Fault core	Cap rock
E (GPa)	cal	cal	10.0	10.0	20.0
v	0.25	0.25	0.25	0.25	0.25
ρ (kgm -3)	2650	2650	2650	2650	2650
к (m²)	cal	cal	1e-14	1e-22	1e-22
φ	0.05	3e-5	0.10	0.01	0.01

Mini fracture vs. medium-sized fracture

Stress change on fault after 2 hours (shut-in)

Negative stress is compressional

Modelina

www.seismo.ethz.ch

The conceptual model

Modelina

The conceptual model

Modelina

Injection test (14 July) induces minor seismicity and opens up fractures

14 July

Injection test (175 m³)

Time

The conceptual model

Modelina

Acid stimulations (17 July) induce further seismicity and increase fracture permeability so that gas can migrate upwards

Time

The conceptual model

Modelina

Well control measures (700 m³ injected) induces main sequence

