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GTO-CCS: problem #2
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• White et al., 2016: identify the correct opening mechanics 
• Question 

Assuming natural joints were being opened by the hydraulic stimulation, 
what are the hydro-mechanical responses of the joints to fluid injection, 
shut-in, and venting (flow-back)? 

• Metrics
Three key observations:

1. The pressure history during and 
following the first pressure-stimulation 
test – TEST1. 

2. The observation that much less than 
half of the injected fluid was 
recovered in each of the three 
subsequent tests (pressure always 
below 17.2 MPa) – TEST2-4.

3. The observation that a much greater 
portion of the injected fluid was 
recovered after an injection experiment 
using proppants – TEST5.
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• ISIP = 138 bar ⇒𝜎𝜎n=20+13.8 ~ 34 MPa
• Vertical stress ~ 50 MPa; 
• Shear stress: 5.8 MPa
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• ISIP = 138 bar ⇒𝜎𝜎n=20+13.8 ~ 34 MPa
• Vertical stress ~ 50 MPa; 
• Shear stress: 5.8 MPa

• Shear strength:
τc = 9.4 MPa, for S0 = 1 MPa and µ = 0.6

• Pressure at shear: 

⇒ P = 26 MPa 

Shear slip occurs before fracturing!
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Modeling Approach
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TOUGH-FLAC 
(Rutqvist et al., 2015; Rinaldi et al., 2015)

• Tests 1 – 4; at rate of 7.9 l/s.
(0.4, 42, 76, 98 m3; 105, 11000, 
20000, 36000 gals)

• Fracture represented by finite 
thickness element

• Anisotropic plasticity model allowing 
shear (Coulomb) and tensile failure

• Strain-softening for sudden slip

• Cumulative seismic moment as:
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Hydroshearing model
for fracture zone
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𝑏𝑏𝑒𝑒𝑒𝑒 = 𝑏𝑏𝑟𝑟 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚exp(𝛼𝛼𝜎𝜎′𝑛𝑛)

𝒃𝒃 = 𝒃𝒃𝒆𝒆𝒆𝒆 + 𝒃𝒃𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔𝒔𝒔 + 𝒃𝒃𝒐𝒐𝒐𝒐
Elastic opening:
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Fracture permeability 
governed by “cubic law”:

𝜅𝜅𝑓𝑓 = 𝑓𝑓𝑑𝑑
𝑏𝑏3
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Hydroshearing or 
elastic opening?
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EL HS
residual aperture 𝒃𝒃𝒔𝒔 (µm) 18.2 21.1

maximum aperture 𝒃𝒃𝒎𝒎𝒔𝒔𝒎𝒎 (µm) 1300 569

stress dependency 𝜶𝜶 (MPa-1) 0.37 0.45

maximum shear aperture  𝒃𝒃𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔𝒔𝒔𝒎𝒎𝒔𝒔𝒎𝒎 (µm) - 90

dilation angle 𝝍𝝍 (˚) - 10

Calibration with iTOUGH2-PEST + TOUGH-FLAC 
(Rinaldi et al., 2017)

TEST 1

Calibrated 
parameters



Hydroshearing or opening? 
Pressure evolution

07/03/2019

TEST 1

TEST 2-4



Hydroshearing or opening? 
Flow back

07/03/2019

Our interpretation of ”much less than half”
is in the order of few percent not less than 2%



Hydroshearing or opening? 
Permeability evolution
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Hydroshearing or opening? 
Sheared zone and seismicity
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Sensitivity analysis 1
maximum shear aperture
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CASE 60 µm 90 µm 120  µm

(%) Mw nev (%) Mw nev (%) Mw nev

Test 1 28 -2.3 3 28 -2.3 3 28 -2.3 3

Test 2 8.5 0.6 72 16 0.6 61 23 0.5 63

Test 3 5.2 0.6 66 9.3 0.5 58 15 0.4 59

Test 4 3.4 0.6 65 5.2 0.5 63 8.3 0.5 58

Larger maximum shear 
aperture allows larger flow 
back, with slightly smaller 

cumulative seismic 
magnitude (less pressure)



Sensitivity analysis 2
dilation angle
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Lower dilation allows for more 
tensile opening, hence more 

flow back, but also larger 
cumulative seismic magnitude. 

The case of 0.1˚ shows 
progressive increase in 

residual permeability near well

CASE 10 5 1 0.1

(%) Mw nev (%) Mw nev (%) Mw nev (%) Mw nev

Test 1 28 -2.3 3 25 -2.2 3 23 -2.3 3 22 -2.4 1

Test 2 16 0.6 61 17 0.6 66 22 0.7 70 15 0.7 72

Test 3 9.3 0.5 58 10 0.5 59 15 0.6 65 15 0.7 66

Test 4 5.2 0.5 63 5.8 0.5 77 8.5 0.6 70 12 0.7 69



Concluding remarks
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• The flow-pressure response with stated maximum pressure and flow 
rates at one of Fenton Hill experiments could be explained by combined 
effects of shear dilation and non-linear elastic fracture opening

• Results are quite sensitive to parameters variation. Sensitivity 
analysis of the dilation angle evidences a very complex interaction 
among fluid flow, pressure, and seismic activity

• Assuming appropriate conditions, the simulation results suggest that 
fluid circulation could be enhanced without inducing large seismic 
events. 

• But results also highlight the importance of monitoring not only for 
seismic activity, in particular for storage projects, given the possible 
aseismic (or with seismic magnitude below measurable threshold) 
creation of permeable pathway compromising the sealing capacity of a 
given site.



Extra: porosity changes
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CASE Base case Porosity changes

(%) Mw nev (%) Mw nev

Test 1 28 -2.3 3 28 -2.3 3

Test 2 16 0.6 61 13.3 0.4 51

Test 3 9.3 0.5 58 8.4 0.4 37

Test 4 5.2 0.5 63 4.9 0.5 55

Porosity changes result in 
larger storage volume. The 
extent of the reactivated 
fracture zone is much 
smaller for the case with 
porosity changes, resulting 
in smaller flow-back 
percentage. 



Extra: fracture density
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CASE Base case Fracture density 
10x

(%) Mw nev (%) Mw nev

Test 1 28 -2.3 3 28 -2.3 3

Test 2 16 0.6 61 13.3 0.4 51

Test 3 9.3 0.5 58 8.4 0.4 37

Test 4 5.2 0.5 63 4.9 0.5 55

Higher joint density results 
in a slightly larger fracture 
zone toward shallow depths, 
larger number of reactivated 
patches enlarging the 
stimulated region and much 
higher flow back.



Extra: mesh discretization
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