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T - A rupture triggered by injection
effects of injection can propagate beyond
(fluid pressure .
the pressurized zone

diffusion)
j/ if the fault has enough pre-stress.
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Size of earthqguakes induced by fluid injection
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Size of earthquakes induced by fluid injection

M4 =

M2

Injection at steady rate + isotropic diffusion
- size of self-arrested ruptures
from fracture mechanics

Fault at given distance from injection point
Each curve: a different injection rate

Envelope: the largest self-arrested rupture
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Fracture mechanics: Moax < AV3/?

Galis et al (2017)

Laboratory experiments (cm-scale) (Goodfellow et al., 2015)

In situ experiments (m-to-dam-scale) (De Barros et al., 2016, Duboeuf et al., 2017)
Hydraulic fracturing (hm-to-km-scale) (Maxwell, 2013)

Scientific, fracturing, geothermal, disposal (km-scale) (Buijze et al., 2015)
Scientific, fracturing, geothermal, disposal (km-scale) (McGarr, 2014)

Hydraulic fracturing (hm-to-km-scale) (Atkinson et al., 2016) max. volume
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Depth-confined ruptures
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Earthquake initiation and arrest of ruptures
triggered by elongated overstressed regions
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Size of earthqguakes induced by fluid injection

(Galis et al 2017)
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Earthquake initiation and arrest of ruptures
triggered by elongated overstressed regions

AuR = e

Equivalent of Scenario 2
for § < 2.75 with
/ direct transition to runaway ruptures
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A crack-tip equation of motion for large earthquakes

; For crack-like ruptures in 2D:
AT?L
’ | GC — g(v) 2“

Fx

(Freund 1989)

For long ruptures in 3D
with fixed rupture width W?




A crack-tip equation of motion for large earthquakes

New equation for long ruptures (L>W):
. 2 2
GC=GO(1—M 1) wherea5=\/1—(i) and GOzATW

v2 wal Vg U

Applied to faults with heterogeneous fracture energy and stress drop:
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Arrest criterion for elongated ruptures
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Elongated earthquake ruptures

2004 Mw 9.3 Sumatra
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Faults driven by localized loads

Fault loaded by deep creep

Stress concentration




Rupture unzipping the lower edge
of the seismogenic zone
(simulation by Junle Jiang)
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2015 Mw 7.8 Gorkha, Nepal earthquake
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Dynamic model of the 2016 Mw 7.8 Kaikoura earthquake
A rupture cascade on weak faults
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Long ruptures in the lab

Mello et al (2014)
in Rosakis lab (Caltech)
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Lengline et al (2014) Soultz
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Observation (Soultz, etc):
Events with different M but same fc

Model:
Two events, same stress drop, different width
> and large events

Same length = same duration
— same corner frequency

To do:
Look for second corner frequency (width-
controlled)



Connecting models of natural and induced earthquakes

Natural and induced seismicity share some common features
Opportunities to understand rupture processes at a fundamental level

Classical fracture mechanics provides useful results
- rupture initiation and arrest, time-to-failure, foreshocks, b-values
Non-conventional fracture mechanics can advance us further = large earthquakes

A(1-GG,)

A fluid injectioninto a reservoir B a stress concentration at an interplateinterface
Along strike

o

A_ A ll A
v = V VY

Seismg
(b

\ genfCZOr]e
rittle deformaﬁo n)

st
ress Concentfatjon

o 1

A 4

VAV,



	Connecting models of natural and induced earthquakes
	Foliennummer 2
	Foliennummer 3
	Size of earthquakes induced by fluid injection
	Size of earthquakes induced by fluid injection
	Fracture mechanics:  𝑀 0𝑚𝑎𝑥 ∝Δ 𝑉 𝟑/𝟐 
	Depth-confined ruptures
	Earthquake initiation and arrest of ruptures �triggered by elongated overstressed regions
	Size of earthquakes induced by fluid injection
	Earthquake initiation and arrest of ruptures �triggered by elongated overstressed regions
	A crack-tip equation of motion for large earthquakes
	A crack-tip equation of motion for large earthquakes
	Arrest criterion for elongated ruptures
	Elongated earthquake ruptures
	Faults driven by localized loads
	Foliennummer 16
	Dynamic model of the 2016 Mw 7.8 Kaikoura earthquake�A rupture cascade on weak faults
	Long ruptures in the lab
	Foliennummer 19
	Connecting models of natural and induced earthquakes

