

Seismicity in Central Oklahoma shows features of reservoir-induced seismicity

L. Johann, S. A. Shapiro & C. Dinske

Freie Universität Berlin, Institute of Geophysics

7 March, 2019

Lisa Johann URIS: A model for seismicity in Oklahoma

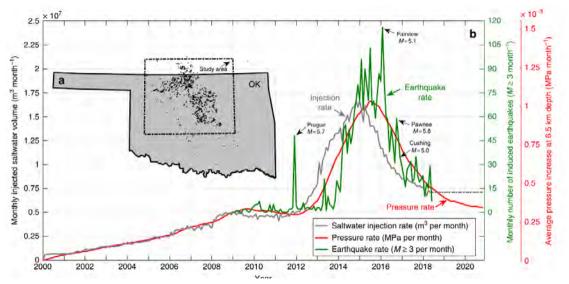
SCIENTIFIC REPORTS

OPEN

The surge of earthquakes in Central Oklahoma has features of reservoirinduced seismicity

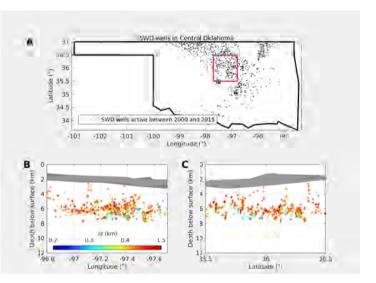
Received: 9 April 2018 Accepted: 19 July 2018 Published online: 31 July 2018

Lisa Johann (), Serge A. Shapiro & Carsten Dinske


The recent surge of seismicity in Oklahoma and Kansa's related to fluid disposal. Evidences suggest that critical parameters are the injection volume as very las injection depth but dominant hypisical processes and a corresponding model to describe the physics are still not clear. We analyse the spatiotemporal distribution of induced earthquakes in the basement and fluid visile signatures of pore pressure diffusion and poroelastic coupling, features which strongly resemble seismicity induced by the filling of artificial lakes, so-called reservoir-induced estimicity. We devolped a first principle model of underground reservoir-induced seismicity. The physics of the model are based upon the combined mechanisms of fluid mass added to the pore-space of the injection layer and acting as a normal stress on the basement surface, pore-fluid pressure diffusion in the basement as well as poroelastic coupling reservoir-induced seismicity. The more and emore and emore a term and earting as a normal stress on the biasement surface, pore-fluid pressure diffusion in the basement as well as prorelastic coupling prevalent in Oklahoma. Our model explains observed injection volume and depth dependence of the seismicity and should be considered as a basis for future hazard prediction and prevention as well as for planning possible disposal sites.

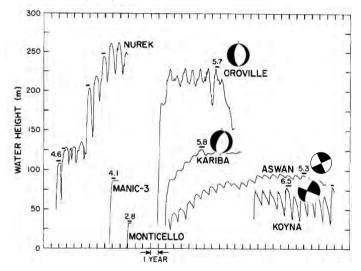
Starting in 2009, an unexpected burst of earthquakes has struck the central US.^{3,1}. Whereas only about one magmided $M \ge 3$ entraphase happened per year in north-central Oklahoma before 2009, approximately 900 $M \ge 3$ events were recorded in 2015. It is now widely understood that this acceleration of seismic activity is linked to the injection of huge volumes of waste water through all waster disposal (SWD) wells^{3,1}. Most of these wells inject into the highly permeable, underpressured Arbuckle aquifer which is hydraulically connected to the underlying crystalline basement where most of the testinicity occurs. In reaction to the testing linces are 0 are thankaes, the Oklahoma Corporation Commission (OCC) Oli and Gas Division called for a 40% reduction of the 2014 injection volume in Central Oklahoma to be completed in mile 2016.

Numerous studies on mechanisms explaining the spatio-temporal evolution of the observed fluid-disposal induced estimutively have been published to date. There are indications that the injection volume as well as nigetion depth affect the seismic activity¹. However, it remains a challenging task to assess the governing physical processes because they are assumed to deviate from the one which cortor is similarity induced by high-pressure reservoir stimulations¹⁰. For the case of Oklahoma, firstly, events occur in the deeper basement and not directly in the overlying injection formation. Scondly, seismicity is also observed ore broad areas far from injectors. And thirdly, unlike in the case of pure pore-fluid pressure diffusion where the spatio-temporal event evolution is reveloced by a tristering from², the time and location of estrobasks in Oklahoma dees not clearly observation.

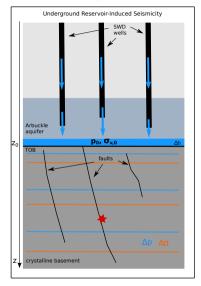

Johann et al. (2018)

Motivation

(From Langenbruch et al., 2018)


- ► seismicity at 2 5 km below top of the basement (TOB) → aseismic gap below TOB
- ▶ numerous injectors \rightarrow cumulative volume effect
- events occur occasionally far from single high-volume injectors
- ⇒ Can we derive a model explaining these features?

(Catalog from Schoenball and Ellsworth, 2017)


Reservoir-Induced Seismicity

see e.g. Talwani (1997), Simpson et al. (1988)

(Modified after Simpson et al., 1988)

Conceptual Model: Underground Reservoir-Induced Seismicity

Note:

 p_0 : pore-fluid pressure below the water column

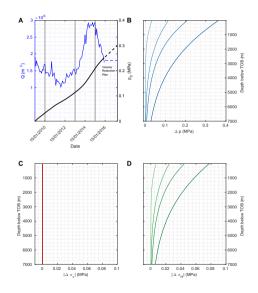
 $\sigma_{\rm v,0}$: vertical stress given by weight of the water column

(Modified after Johann et al., 2018)

Modelling - Time-Dependent Boundary Condition

Analytic Solution

Modified uniaxial loading problem: 1D based on Shapiro (2015)


Numerical Model FEM (COMSOL[®]): 2D plane strain

Modelling - Time-Dependent Boundary Condition

Analytic Solution

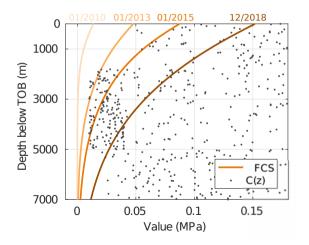
Modified uniaxial loading problem: 1D based on Shapiro (2015)

Numerical Model FEM (COMSOL[®]): 2D plane strain

Synthetic Seismicity

Triggering criterion (Rothert and Shapiro, 2003):

 $\Delta FCS(z,t) > C(z)$

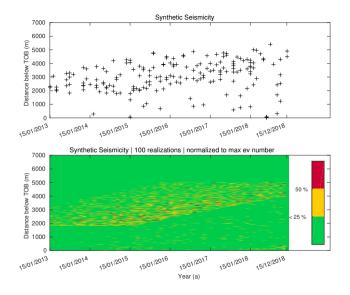

 $\Delta FCS(z, t) = 0.5\Delta\sigma_d - \sin\phi_f (\Delta\sigma_m - \Delta p)$: Change in failure criterion stress

C(z): ΔFCS , necessary for activation of critically stressed, favorably oriented preexisting fractures

Synthetic Seismicity

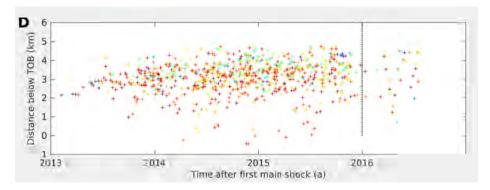
Triggering criterion (Rothert and Shapiro, 2003):

$$\Delta FCS(z,t) > C(z)$$



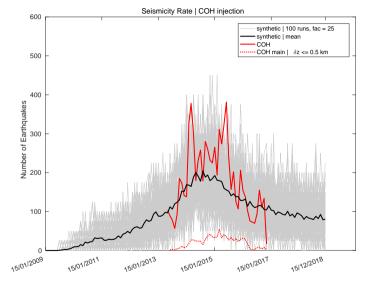
 $\Delta FCS(z, t) = 0.5\Delta\sigma_d - \sin\phi_f (\Delta\sigma_m - \Delta p)$: Change in failure criterion stress

C(z): ΔFCS , necessary for activation of critically stressed, favorably oriented preexisting fractures


Here:

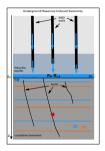
 ΔFCS : for a strike-slip regime C: log-normally distributed with layers of higher/ lower values in the upper/lower basement

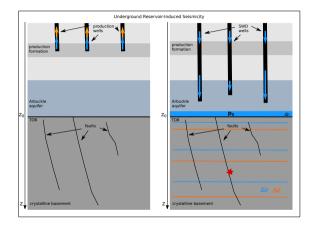
(From Johann et al., 2018)


Oklahoma Seismicity

(Catalog from Schoenball and Ellsworth, 2017)

General conformity of spatio-temporal evolution in model years 3 (ightarrow 2013) to 5 (ightarrow 2016)

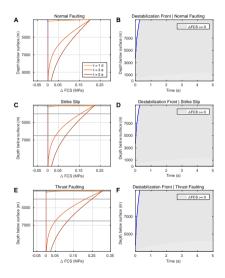

Seismicity Rates


(From Johann et al., 2018)

URIS Model 2.0: Consider the effect of the water origin

So far...

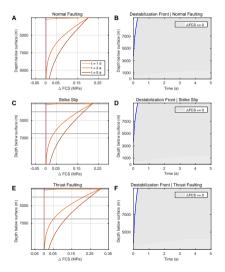
(Modified after Johann et al., 2018)

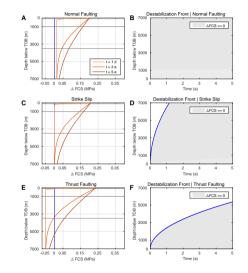


Now:

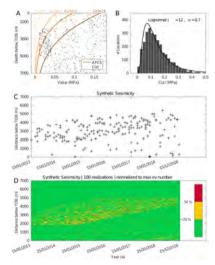
Note:

 p_0 : pore-fluid pressure below the water column $\sigma_{v,0}$ is removed

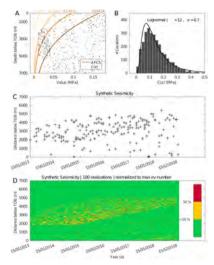

Pressure- & Stress Solutions: Influence of the Tectonic Setting Modified URIS

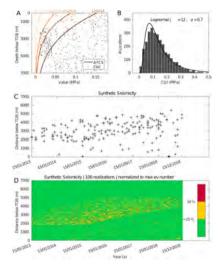


Pressure- & Stress Solutions: Influence of the Tectonic Setting


URIS

Modified URIS





Time-Dependent Boundary: Synthetic Seismicity Modified URIS

Time-Dependent Boundary: Synthetic Seismicity Modified URIS URIS

(From Johann et al., 2018)

- ► A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)
- Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space
- ▶ Seismic activity is sensitive to the tectonic stress regime
- Spatio-temporal signatures of seismicity in Central Oklahoma (05/2013 11/2016) are well explained by the URIS model
- Taking the origin of the waste water into account (i.e. no vertical stress acting on the TOB), does not change ΔFCS for a strike-slip regime significantly, but has an important effect regarding normal and thrust faulting regimes

- ► A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)
- ► Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space
- ▶ Seismic activity is sensitive to the tectonic stress regime
- Spatio-temporal signatures of seismicity in Central Oklahoma (05/2013 11/2016) are well explained by the URIS model
- Taking the origin of the waste water into account (i.e. no vertical stress acting on the TOB), does not change ΔFCS for a strike-slip regime significantly, but has an important effect regarding normal and thrust faulting regimes

- ► A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)
- ► Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space
- ► Seismic activity is sensitive to the tectonic stress regime
- Spatio-temporal signatures of seismicity in Central Oklahoma (05/2013 11/2016) are well explained by the URIS model
- Taking the origin of the waste water into account (i.e. no vertical stress acting on the TOB), does not change ΔFCS for a strike-slip regime significantly, but has an important effect regarding normal and thrust faulting regimes

- ► A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)
- ► Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space
- ► Seismic activity is sensitive to the tectonic stress regime
- ► Spatio-temporal signatures of seismicity in Central Oklahoma (05/2013 11/2016) are well explained by the URIS model
- Taking the origin of the waste water into account (i.e. no vertical stress acting on the TOB), does not change ΔFCS for a strike-slip regime significantly, but has an important effect regarding normal and thrust faulting regimes

- ► A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)
- ► Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space
- ► Seismic activity is sensitive to the tectonic stress regime
- Spatio-temporal signatures of seismicity in Central Oklahoma (05/2013 11/2016) are well explained by the URIS model
- ► Taking the origin of the waste water into account (i.e. no vertical stress acting on the TOB), does not change △FCS for a strike-slip regime significantly, but has an important effect regarding normal and thrust faulting regimes

Thank You!

We thank the sponsors of the PHASE consortium for supporting the research presented in this talk

Lisa Johann URIS: A model for seismicity in Oklahoma

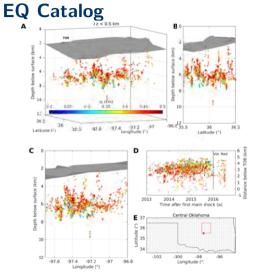
References I

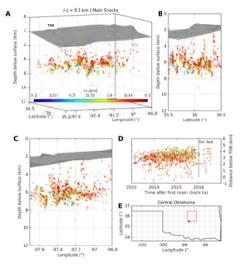
- Chang, K. W. and Segall, P. (2016). Injection-induced seismicity on basement faults including poroelastic stressing. *Journal of Geophysical Research: Solid Earth*, 121:2708 2726.
- Johann, L., Shapiro, S. A., and Dinske, C. (2018). The surge of earthquakes in Central Oklahoma has features of reservoir-induced seismicity. *Sci. Rep.*, 8.
- Langenbruch, C., Weingarten, M., and Zoback, M. (2018). Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. *Nat. Commun.*, 9.
- Norbeck, J. H. and Horne, R. N. (2016). Evidence for a transient hydromechanical and frictional faulting response during the 2011 Mw 5.6 Prague, Oklahoma earthquake sequence. *Journal of Geophysical Research: Solid Earth*, 121(12):8688–8705.
- Rothert, E. and Shapiro, S. A. (2003). Microseismic monitoring of borehole fluid injections: Data modeling and inversion for hydraulic properties of rocks. *Geophysics*, 68:685–689.
- Schoenball, M. and Ellsworth, W. (2017). Waveform-Relocated Earthquake Catalog for Oklahoma and Southern Kansas Illuminates the Regional Fault Network. *Seismol. Res. Lett.*, 88(4).

References II

Shapiro, S. (2015). Fluid-Induced Seismicity. Cambridge Universiity Press, Cambridge, U.K.

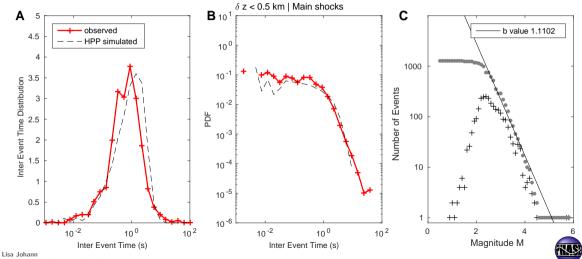
- Simpson, D. W., Leith, W. S., and Scholz, C. H. (1988). Two types of reservoir-induced seismicity. *Bull. Seismol. Soc. Am.*, 78(6):2025–2040.
- Talwani, P. (1997). On the Nature of Reservoir-induced Seismicity. Pure Appl. Geophys., 150:473-492.





Appendix

THE REAL



Lisa Johann URIS: A model for seismicity in Oklahoma

Declustering

URIS: A model for seismicity in Oklahoma

Analytic Solution

For a poroelastic medium & gravity acting in vertical z-direction (based on Shapiro, 2015), $\sigma < 0$: compressive stress:

$$p(z,t) = H_f + \rho_f g(z - z_0) + p_0 h(t) \left[\Phi_{Ar} \frac{n_S}{G_{dr}S} + \operatorname{erfc} \left(\frac{z - z_0}{\sqrt{4Dt}} \right) \left[1 - \Phi_{Ar} \frac{n_S}{G_{dr}S} \right] \right]$$
$$\sigma_{zz}(z,t) = -H_s - \rho g(z - z_0) - h(t) p_0 \Phi_{Ar}$$
$$\sigma_{xx}(z,t) = \sigma_{yy}(z,t) = \lambda_{dr} \epsilon_{zz}(z,t) - \alpha p(z,t)$$

 z_0 : top of the basement

 H_f , H_s : hydrostatic pressure and lithostatic stress at z_0 (const.)

 $\rho,~\rho_{\rm f}:$ matrix and pore fluid density

 G_{dr} , λ_{dr} , α : drained shear, first Lamé parameter and the Biot coefficient

 $n_S = \frac{\alpha G_{dr}}{\lambda_L + 2G_L}$: poroelastic stress coefficient

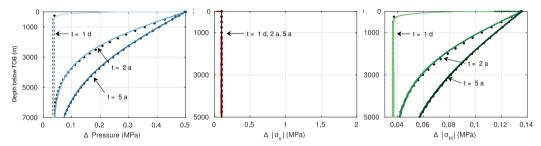
S, D: storage coefficient and the hydraulic diffusivity

*p*₀: boundary pressure / stress

Numerical Model

Finite element model performed with COMSOL Multiphysics software: 2D plane strain

Hydro-mechanical parameters

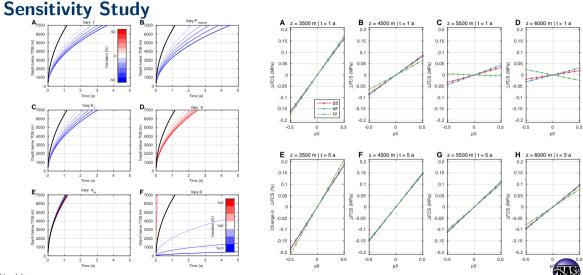

Hydraulic diffusivity D	0.05 (m ² /s)
Porosity Φ	1 (%)
Drained density ρ_{dr}	2740 $(kg/m^3)^{**}$
First Lamé parameter λ_{dr}	20 (GPa)
Second Lamé parameter G_{dr}	25 (GPa)**
Fluid density $ ho_f$	940.3 (kg/m ³)*
Dynamic viscosity η	2e-04 (Pas)*
Bulk modulus fluid K _f	2 (GPa)*
Biot coefficient $lpha$	0.3
Coefficient of friction μ_f	0.7
Porosity Arbuckle Φ_{Ar}	20 (%)
*Norbeck and Horne (2016), **Chang and Segall (2016)	

Modelling

Analytic Solution

Modified uniaxial loading problem: 1D based on Shapiro (2015)

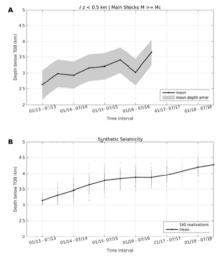
Numerical Model FEM (COMSOL[®]): 2D plane strain



Failure Criterion Stress for optimally oriented faults

$$\Delta FCS = \frac{1}{2} \Delta \sigma_d - \sin \phi_f \left(\Delta \sigma_m - \Delta p \right)$$

 $\Delta FCS > 0$: Destabilization $\Delta FCS < 0$: Stabilization



Lisa Johann URIS: A model for seismicity in Oklahoma

Synthetic *r* – *t*-**plot**: **Uncertainty**

Lisa Johann URIS: A model for seismicity in Oklahoma

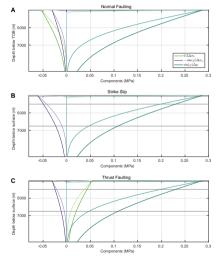
Modified URIS: Analytic Solution

For a poroelastic medium & gravity acting in vertical *z*-direction (based on Shapiro, 2015; Johann et al., 2018), $\sigma < 0$: compressive stress:

$$\begin{split} \Delta p(z,t) &= p_0 h(t) \mathrm{erfc} \left(\frac{z - z_0}{\sqrt{4Dt}} \right) \,, \\ \Delta \sigma_{zz}(z,t) &= 0 \,, \\ \Delta \epsilon_{zz}(z,t) &= \frac{\alpha p(z,t)}{\lambda_{dr} + 2G_{dr}} \,, \\ \Delta \sigma_{xx}(z,t) &= \sigma_{yy}(z,t) = \lambda_{dr} \epsilon_{zz}(z,t) - \alpha p(z,t) \end{split}$$

 z_0 : top of the basement

 ρ , ρ_f : matrix and pore fluid density


 G_{dr} , λ_{dr} , α : drained shear, first Lamé parameter and the Biot coefficient

 $n_{S} = \frac{\alpha G_{dr}}{\lambda_{dr} + 2G_{dr}}$: poroelastic stress coefficient

- S, D: storage coefficient and the hydraulic diffusivity
- p_0, s_0 : boundary pressure / stress

Modified URIS: ΔFCS Contributions

REN:

Lisa Johann URIS: A model for seismicity in Oklahoma