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The surge of earthquakes in Central
Oklahoma has features of reservoir-
induced seismicity

Lisa Johann(, Serge A. Shapiro & Carsten Dinske

The recent surge ofseismiclty in Oklahoma and Kansas i related to lud disposal. Evidences suggest
the injection
processes anda (orrespondlng model to describe the physlcs are still not clear. We analyse the spatio-
poral distribution of induced inthe it and find visible sig f pore

and ngly ismicity induced by
theﬁlllngofamﬁclal lakes, so-called ir-i ismicif afi inciple del
of Imdzrgmund reservairinduced sismicity. The physics of the madel are based upon the combined
luid f the injection layer normal stress
pore-fluid diffusion in the b; t wellas ic coupling
P i d stress.
induced mnnrmalfaulnng and trike- sllpsemngs,thelanerbemg
prevalent in Oklahoma. Our del explail b: ‘the
seismicity and should be considered as a basis for future azard predlnlon ind preventlon aswell as for
planning possible disposal sites.

on

Starting in 2009, an unexpected burst of carthquakes has struck the central Us. %, Whereas only about one mag-
nitude M 3 carthquake happened per year in north-central Oklahoma before 2009, approximately 900 M >3
events were recorded in 2015". It is now widely understood that this acceleration of seismic activity is linked to
the injection of huge volumes of waste water through salt water disposal (SWD) wells™. Most of these wells inject
into the highly permeable, underpressured Arbuckle aquifer which is hydraulically connected to the underlying
crystalline basement where most of the scismicity occurs. In reaction to the strong increase of earthquakes, the
Oklahoma Corporation Commission (OCC) Oil and Gas Division called for a 40% reduction of the 2014 injec-
tion volume in Central Oklahoma to be completed in mid- 2016.

Numerous studies on mechanisms explaining the spatio-temporal evolution of the observed fluid-disposal
induced seismicity have been published to date. There are indications that the injection volume as well as injec-
tion depth affect the seismic activity". However, it remains a challenging task to assess the governing physical
processes because they are assumed to deviate from the ones which control seismicity induced by high-pressure
reservoir stimulations™. For the case of Oklahoma, firstly, events occur in the decper basement and not directly
in the overlying injection formation. Secondly, seismicity is also observed over broad areas far from injectors.
And thirdly, unfike in the case of pure pore-fluid pressure diffusion where the spatio-temporal event evolution is
enveloned by a trieeering front”. the time and location of earthauakes in Oklahoma does not clearly obev such a

Johann et al.

2018



Motivation

(From Langenbruch et al., 2018)



seismicity at 2 - 5 km
below top of the
basement (TOB) —
aseismic gap below TOB

numerous injectors —
cumulative volume effect

events occur occasionally
far from single
high-volume injectors
Can we derive a model
explaining these
features?

(Catalog from Schoenball and Ellsworth, 2017)



Reservoir-Induced Seismicity
see e.g. Talwani (1997), Simpson et al. (1988)

(Modified after Simpson et al., 1988)



Conceptual Model: Underground Reservoir-Induced Seismicity

Underground Reservoir-Induced Seismicity
wels S

¥

Note:

po: pore-fluid pressure below
the water column

ov,0: Vvertical stress given by
weight of the water column

(Modified after Johann et al., 2018)



Modelling - Time-Dependent Boundary Condition

Analytic Solution
Modified uniaxial loading problem: 1D
based on Shapiro (2015)

Numerical Model
FEM (COMSOL®): 2D plane strain



Modelling - Time-Dependent Boundary Condition

Analytic Solution
Modified uniaxial loading problem: 1D
based on Shapiro (2015)

Numerical Model
FEM (COMSOL®): 2D plane strain
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Synthetic Seismicity

Triggering criterion (Rothert and Shapiro, 2003): AFCS(z,t) = 0.5A0y — singr (Aom — Ap): Change

in failure criterion stress

AFCS(Z, t) > C(Z) C(z): AFCS, necessary for activation of critically
stressed, favorably oriented preexisting fractures




Synthetic Seismicity
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Synthetic Seismicity
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(From Johann et al., 2018)



Oklahoma Seismicity

(Catalog from Schoenball and Ellsworth, 2017)

General conformity of spatio-temporal evolution in
model years 3 (— 2013) to 5 (— 2016)




Seismicity Rates
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URIS Model 2.0: Consider the effect of the water origin

So far...

(Modified after
Johann et al., 2018)

Now:

Underground Reservoir-Induced Seismicity

production
wells X

Note:
po: pore-fluid pressure below the water column
oy, is removed



Pressure- & Stress Solutions: Influence of the Tectonic Setting
Modified URIS
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Pressure- & Stress Solutions: Influence of the Tectonic Setting
Modified URIS URIS

Normal Faulin Destabilization Front | Normal Faultin Normal Fauling Destabilization Front | Normal Faultin
A 9 B | 9 A o 9 B 700d | g
g £ £ z
g 5000 3 7000 £ E s000
£ £ © 3000 <3
a 3 5000 z z
2 7000 H s £ 000
: £ %000 £ s000 H
£ 2000 8 8 8
e S 1000 1000
o 7000 0
005 0 005 015 025 o 1 2 s a4 s 005 0 005 015 025 035 o 1 2 3 4 5
A FCS (MPa) Time (@) A FCS (MPa) Time (@)
stike S Destabilization Front | Strike Sii Stike Sii Destabilization Front | Strike Sl
C P D ! P C 0 p D 7000 ! P
1000
3 B z £
£ s000 < 7000 £ E s000
g g 3 8
£ £ S 3000 6
a 3 5000 3 z
2 7000 z s £ 3000
2 2 3000 £ 5000 s
g g 8 8
s S 1000 1000
o 7000 0
005 0 005 015 025 o 1 2 s a4 s 005 0 005 015 025 035 o 1 2 3 4 5
A FCS (MPa) Time (a) A FCS (WPa) Time (@)
£ __ThvustFauting [ Destabiizaton Front | Thust Fauting E o Thrust Fauling | 7opoDesiabiizaton Front Thrust Fauting
1000
< 5000 £ B £ s000
£ € 7000 © 3000 <3
2 a 3
Z 7000 H £ 2 3000
] £ 5000 £ 5000 H
H & S S 1000
7000 0
005 0 005 025 035 o 1 5 005 0 005 015 025 035 o 1 2 3 4 5

015 2 3 4
AFCS (MPa) “Time (a) AFCS (MPa) Time ()



Time-Dependent Boundary: Synthetic Seismicity
Modified URIS



Time-Dependent Boundary: Synthetic Seismicity
Modified URIS URIS

(From Johann et al., 2018)
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» A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)
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Summary & Conclusions

» A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)

» Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space

Lisa Johann m

URIS: A model for seismicity in Oklahoma



Berlin

Freie Universitdt %

Summary & Conclusions

» A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)
» Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space

» Seismic activity is sensitive to the tectonic stress regime
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Summary & Conclusions

» A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)
» Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space
» Seismic activity is sensitive to the tectonic stress regime

» Spatio-temporal signatures of seismicity in Central Oklahoma (05/2013 - 11/2016) are well
explained by the URIS model
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Summary & Conclusions

A new model for seismicity induced by high-volume fluid injections (e.g. waste water disposal)

>
» Based on Reservoir-Induced Seismicity, i.e. uniaxial loading of a poroelastic half-space
» Seismic activity is sensitive to the tectonic stress regime

>

Spatio-temporal signatures of seismicity in Central Oklahoma (05/2013 - 11/2016) are well
explained by the URIS model

» Taking the origin of the waste water into account (i.e. no vertical stress acting on the TOB), does
not change AFCS for a strike-slip regime significantly, but has an important effect regarding
normal and thrust faulting regimes

= Provides an important contribution for the hazard assessment and
seismic risk mitigation at waste water disposal sites.

<
Lisa Johann m
URIS: A model for seismicity in Oklahoma




g

Freie Universitdt

Thank You!

We thank the sponsors of the PHASE consortium for supporting the research presented in this talk
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Analytic Solution

For a poroelastic medium & gravity acting in vertical z-direction
(based on Shapiro, 2015), o < 0: compressive stress:

GarS Vvabt) |T M GaS

022(z,t) = —Hs — pg(z — 20) — h(t)poPa,
ox(z,t) = 0y (2, t) = Aarézz (2, t) — ap(z, t)

p(z,t) = Hr + prg(z — 20) + poh(t) {chrns Terfe (Z 7 ZO) {1 o, ”

zp: top of the basement
He, Hs: hydrostatic pressure and lithostatic stress at zy (const.)
p, pr: matrix and pore fluid density

Gdr, Agr, «: drained shear, first Lamé parameter and the Biot coefficient
aGy,

ns = 3136, poroelastic stress coefficient

S, D: storage coefficient and the hydraulic diffusivity
po: boundary pressure / stress



Numerical Model
Finite element model performed with COMSOL Multiphysics software: 2D plane strain

Hydro-mechanical parameters

Hydraulic diffusivity D 0.05 (m?/s)
Porosity & 1 (%)
Drained density pg, 2740 (kg/m3)**
First Lamé parameter Ay, 20 (GPa)
Second Lamé parameter Gy, 25 (GPa)**
Fluid density pr 940.3 (kg/m3)*
Dynamic viscosity 1 2e-04 (Pas)*
Bulk modulus fluid K¢ 2 (GPa)*
Biot coefficient « 0.3
Coefficient of friction uf 0.7
Porosity Arbuckle ® 4, 20 (%)

*Norbeck and Horne (2016), **Chang and Segall (2016)



Modelling

Analytic Solution Numerical Model
Modified uniaxial loading problem: 1D FEM (COMSOL®): 2
based on Shapiro (2015)
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Synthetic r — t-plot: Uncertainty
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Modified URIS: Analytic Solution

For a poroelastic medium & gravity acting in vertical z-direction
(based on Shapiro, 2015; Johann et al., 2018), 0 < 0: compressive stress:

Ap(z,t) = poh(t)eric (\/ﬁ) :

Ac,,(z,t) =0,
ap(z,t
A€zz(Za t) = ﬁ )

Aoy(z,t) =0y (2, t) = Agrezz (2, t) — ap(z, t).

zp: top of the basement

p, ps: matrix and pore fluid density

Gdr, Adr, : drained shear, first Lamé parameter and the Biot coefficient
ng = %: poroelastic stress coefficient

S, D: storage coefficient and the hydraulic diffusivity

Po, So: boundary pressure / stress
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Modified URIS: AFCS Contributions
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