Fluid injection and the mechanics of frictional stability of shale-bearing faults

Marco M. Scuderi and C. Collettini

"La Sapienza" University of Rome, Italy

3rd induced seismicity workshop, Davos

European Union Horizon 2020 Marie Sklodowska-Curie **FEAT** No. 656676

European Research Council

European Research Council Seventh Framework Programme "Ideas" Starting Grant **GLASS**: 259256

Modified after Davies et al., 2013 The increase in fluid pressure along a fault will decrease the effective normal stress that clamps the fault in place favoring fault reactivation

Upon reactivation slip behavior is described via the Rate- and State- Frictional Properties:

(1) potentially seismic (Velocity Weakening)

(2) aseismic (Velocity Strengthening)

Gu et al., 1984 JGR; Leeman et al., 2016 Nat.Comm.

Outstanding questions:

- What is the coupling between hydrological and mechanical properties of a simulated fault during fluid pressurization?
- How fault rheology and frictional stability are influenced by fluid pressurization?

Biaxial Apparatus in a Double Direct Shear configuration

within a Pressure Vessel

Biaxial Apparatus in a Double Direct Shear configuration

within a Pressure Vessel

Shale simulated fault gouge: Illite (60%), Quartz (27%), Kaolinite (9%)

Rate- and state- properties

Scuderi and Collettini, 2018 JGR

Creep Experiments

Creep Experiments - slip behavior upon fluid pressurization

Creep Experiments - Fault zone structure

Conceptual model for fault zone deformation

Scuderi and Collettini, 2018 JGR

Conceptual model for fault zone deformation

Do fault gouge always fails by slow slip upon fluid pressurization?

Details in: Scuderi and Collettini, 2016 SciRep Scuderi et al., 2017 EPSL; Scuderi and Collettini, 2018 JGR

Summary

• Fluid pressurization can promote slow but accelerated fault slip in a fault gouge that is characterized by velocity strengthening behavior (i.e. aseismic creep) acting as an efficient weakening mechanism.

• The observed fault slip behavior is the result of the complex interaction between hydrological, frictional and structural properties of the fault gouge.

• Accelerated aseismic creep can transfer stress to adjacent fault patches that are prone to earthquake nucleation providing a mechanism to trigger seismicity.

European Research Council