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Injection induced earthquakes

Modified after 
Davies et al., 2013

Large scale fluid injection can generate 
overpressure and induce seismicity by 

reactivating existing ancient faults.

Important to characterize:

Slow energy  
release rate

high energy 
release rate

Type of slip behavior

What is the fault response to fluid pressure 
stimulation?

Aseismic  
creep Slow-slip Fast-slip



Fault Reactivation vs. Frictional Slip Stability

The increase in fluid pressure along a fault will decrease the effective normal stress  
that clamps the fault in place favoring fault reactivation

Hubbert and Rubey, 1959 Bull. Geol.Soc. Am
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Fault Reactivation vs. Frictional Slip Stability

Upon reactivation slip behavior is described via the Rate- and State- Frictional Properties: 

(1) potentially seismic (Velocity Weakening) 

(2) aseismic (Velocity Strengthening)

Criterion for fault stability 
defined by the critical stiffness kc

Gu et al., 1984 JGR; Leeman et al., 2016 Nat.Comm.
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Injection induced earthquakes

Outstanding questions:

• What is the coupling between hydrological and mechanical 
properties of a simulated fault during fluid pressurization? 

• How fault rheology and frictional stability are influenced by 
fluid pressurization?



Experimental set-up

Biaxial Apparatus  
in a Double Direct Shear configuration  
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Details in Scuderi et al., 2017 EPSL
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Shale simulated fault gouge: Illite (60%), Quartz (27%), Kaolinite (9%)



Results

Fault strength is low µ=0.28

Fault permeability k~10-19 [m2]

Frictional strength
Rate- and state- properties

Scuderi and Collettini, 2018 JGR



Creep Experiments
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Details in Scuderi et al., 2017 EPSL; Scuderi and Collettini, 2018 JGR
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Creep Experiments - slip behavior upon fluid pressurization

Increase fluid pressure causes fault 
acceleration followed by steady state 

slip at higher slip rate

Fault acceleration remains slow with peak 
slip velocity of ~ 100µm/s

Scuderi and Collettini, 2018 JGR



Creep Experiments - Fluid diffusion 
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Creep Experiments - Fault zone structure
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Conceptual model for fault zone deformation
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Do fault gouge always fails by slow slip upon fluid pressurization?

Details in:  
Scuderi and Collettini, 2016 SciRep 
Scuderi et al., 2017 EPSL;  
Scuderi and Collettini, 2018 JGR



Summary

• Fluid pressurization can promote slow but accelerated fault slip in a fault 
gouge that is characterized by velocity strengthening behavior (i.e. aseismic 
creep) acting as an efficient weakening mechanism.

• The observed fault slip behavior is the result of the complex interaction 
between  hydrological, frictional and structural properties of the fault gouge.

• Accelerated aseismic creep can transfer stress to adjacent fault patches that 
are prone to earthquake nucleation providing a mechanism to trigger seismicity.
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