Human-induced or natural?

Some philosophical considerations and concepts

Norman Sieroka ETH Zürich, D-GESS / D-PHYS

Seismicity Workshop, Schatzalp Davos, March 2019

ETHzürich

Content

- Stagesetting
 - Why philosophy?
- Scientific reasoning
 - Types of inferences
- Explanation and causation
 - Predictions and explanations
 - Types of explanations and types of causes
 - Sufficiency, necessity, and probability
- "Paradigm shift"
 - A little warning and good news
- Summary

Stagesetting: Why philosophy?

- Aim of philosophy: coordinating human experience
 - Getting loose ends together (coherent frame of reasoning)
 - Critical look at social, scientific ... practices (adopting different perspectives)
- This relates to "human-induced" vs. "natural"
 - Inferences based on models, observations ... which have legal and public implications
 - ... so let's have a look at scientific reasoning and causation ...
- The following is about starting a fruitful discourse, not about me being complete or providing solutions!

DGESS

Scientific reasoning: types of inferences

- Three sentences, three possible "inferences"
 - 1. All SWIS participants are in this room. (general rule/law)
 - 2. X is a SWIS participant. (individual observation; cause)
 - 3. X is in this room. (individual observation; effect)
- a. Deduction: from laws and causes to effect
 - 1 & 2, therefore 3 [logically valid]
- b. Induction: from causes and effects to laws
 - 2 & 3, therefore 1 [valid only for finite cases]
- c. Abduction ("inference to the best explanation"): from laws and effects to causes
 - 1 & 3, therefore 2 [not valid]
 - ... in fact, we use this very often in science:

Department of Physics

Leads to notion of explanation ...

Predictions and explanations

"real test of model is to predict future data, not to explain past data" (Geller et al. 2016: Why We Need a New Paradigm of Earthquake Occurrence)

- "Predictions" make claims about future, imply specific temporal relations
 - Opposite of "prediction" would be "retrodiction"
 - ... but both might be "non-explanatory" (cf. tide tables, statistics-based models)
- "Explanations" answer why-questions, provide deeper understanding
 - No general implicit temporal relation between explanation and event
 - Understanding based on general rules/laws (cf. physics-based models)
 - Maybe there are different types of "explanations" (see below)
- Note on a further claim: science must be "prospectively testable"
 - Main concern is about "fudging"
 - NB: "testable" (and even "falsifiable") are very problematic notions

EHzürich

Types of explanation and types of causes

- Different types of explanations based on different types of causation
 - Causal explanations ["causal" in a narrow sense]
 - Based on efficient causation
 - ... which is about physics (transfer of energy and momentum ...)
 - Example: gravitation explaining the fall of an apple
 - Action explanations
 - Based on final causation
 - ... which is about intentions/reasons/goals (usually of human actors)
 - Example: SWIS participance explaining whereabouts (cf. above)
 - ... people are in this room (effect) *because* they are participants (reason or final cause)
 - Distinction very important in legal and ethical contexts
 - ... and seems relevant for "human-induced" vs. "human-triggered" vs. "natural"

Sufficiency, necessity, and probability

- Formal character of causal relations (in terms of modal logic)
 - Sufficiency relation: if A, then B (if I take a shower, I get wet)
 - Necessity relation: if not A, then not B (if the apple had no mass, it would not have fallen down)
 - Again, difference seems relevant for "human-induced" vs. "human-triggered" vs. "natural"
- What do correlation coefficients (probabilities) represent?
 - Propensity: correlation coefficients represent intrinsic tendencies/dispositions of single cases
 - Frequentism: correlation coefficients represent relative frequencies of occurrences
 - Relates to distinction between physics- and statistics-based models
 - Open questions: relative frequencies of what? what is the reference class?
 - Factual past occurrences? Family of simulations/models?
 - Leads toward questions about independency of models and fudging issues!

"Paradigm shift": good news and a warning

There is a "need for a new paradigm" (Geller et al. 2016)

- Warning: Kuhn's "paradigm shifts" include "incommensurability"
 - No progress but untranslatability ?!
- Good news (pace Geller et al.):

"The failure to reach a consensus about the appropriateness, or lack thereof, of the CE model after **30 years of continuing debate reflects poorly on the earthquake science community**. It is comparable to what might have happened in a parallel universe in which the physics research community was still arguing about the existence or nonexistence of the 'ether' in 1917, 30 years after the Michelson-Morley experiment." (Geller et al. 2016, p.186)

In fact, it was quite similar in physics!

Summary: need for broad and common efforts

- I think it is important to discuss (clarify and distinguish) concepts such as prediction, explanation, cause/causation, probability, paradigm, uncertainty, robustness, fudging, laws, principles ...
- ... and that interdisciplinary efforts are particularly productive here to learn
 - ... about the role of physics-based and statistics-based approaches
 - ... about whether or what kind of "paradigm shift" is needed
 - ... about sensible criteria to distinguish "human-induced" from "natural"
 - ...

Many thanks for your kind attention!

ETHzürich

Finding and analysing causal relations

Empirical finding: correlation between events of types A and B

- 1. Causal interaction: A-events cause B-events
- 2. Common cause: A- and B-events are both caused by C-events
- 3. Accidental: no causal relation between A- and B-events
- NB: 1 and 2 distinguishable by looking at possibility of information transport or invention
- How to figure out relevant parameters?
 - Important heuristics: Mills's methods (A System of Logic, 1843) including:
 - Method of Agreement:
 - Only one common antecedent shared by all instances where effect is observed
 - Conclusion: shared antecedent is the cause of the effect
 - Method of Difference:
 - Only one prior difference between cases where effect occurs and where is doesn't
 - Conclusion: antecendent which is present only in the case of the effect is the cause

J.S. Mill (1806-1873)

EHzürich

Important causal factors in human-induced earthquakes

- Some candidates:
 - Correlation mainshock-aftershock
 - Depth
 - Local history
 - (NB: waveform characteristics as bad candidates)
- Note that different models apply different preselection filters
 - E.g., ETAS doesn't consider foreshocks to be possible indicators,
 - ... whereas earthquake nucleation theory does
 - NB: so-called experimenters' regress lurking: one must make sure to either agree on theory/model or on good experimental setup!

Uncertainty

- Types of uncertainty:
 - Suggestion a:
 - Inexactness
 - Ambiguity
 - Non-analyzability
 - underdetermination
 - Suggestion b:
 - event uncertainty
 - parameter uncertainty
 - model uncertainty (known and unknown model inadequacies)

Robustness

- Decreasing uncertainty …
 - ... by slightly shifting parameter of a concrete model
 - ... by investigating whole ensembles of models
 - models which are (ideally) based on different sets of parameters etc.
 - if models are closely related, then (alleged) robustness might be an artefact
 - NB: Robust processes vs. actual sequences

Finding and analysing causal relations

