
DOKTORARBEITSTAGE MEDIZIN, 11. & 12. MAI 2010

KLINIK
ABTEILUNG
ARBEITSGRUPPE

Titel Deiner Arbeit Titel Deiner Arbeit Titel Deiner Arbeit Immer
Noch Titel Deiner Arbeit Und Immer noch Titel Deiner Arbeit

Dein Name1, Zweit Autor2, Dritt Autor1, Und So Weiter1, Letzt Autor1

1Deine Klinik / Institut, 2Andere Klinik / Institut (falls zutreffend)

pyNetOpt3D
A Python API for Monitoring Network Optimization

Tobias Megies (LMU Munich), Toni Kraft (ETH Zurich)

Network Optimization for Geotechnical Projects
At the Swiss Seismological Service (SED), monitoring network design for
geotechnical projects that could cause induced seismicity is conducted
using a set of C codes (NetOpt3D) based on work by Hardt and Scherbaum
(1994) and further developed by Kraft et al. (2013). NetOpt3D finds D-
optimal designs using a simulated annealing approach and handles 3D ve-
locity and attenuation models, accounts for existing stations and the ex-
pected SNR of bodywaves at existing and new stations based on models of
seismic noise (Kraft 2016).

The Problem
In its current form, NetOpt3D is lacking usability and it is time consuming
to set up new optimization problems. Input files (velocity models, syn-
thetic catalogs, ...) have to be set up manually in fixed legacy ASCII formats
defined by the underlying C codes and a large number of helper programs
(Linux shell scripts, ...) are used for preparational steps (e.g. to calculate
convex hull of earthquakes, buffer it and set up equidistant station grids)
and for analysis and visualization of results (mostly GMT scripts).

Our Solution
We are developing a consistent and easy-to-use Python API pyNetOpt3D
that internally uses NetOpt3D C codes but hides all unwieldy steps from the
user (input file setup, parsing of results, ...).
It will be possible to steer a complete optimization run with a single, short
Python script using the newly developed API. We will also enhance repro-
ducibility by providing (de)serialization of a full optimization run including
all input data and results into a single file. Visualization of optimization re-

Main Features of pyNetOpt3D

Easy-to-use Python API around NetOpt3D

All functionality of pyNetOpt3D is available via a clean Python API, making
it possible to steer a complete optimization problem using a single, short
Python script. NetOpt3D C codes are used under the hood.

Automatic Coordinate Conversions, Convex Hulls, Buffers, Station Grids

All coordinate conversions from global geographic coordinates (WGS84) to
local geodetic coordinates (e.g. UTM, Gauß-Krüger, Swiss Grid, ...) and vice
versa are handled automatically (using pyroj/proj.4). Functionality to calcu-
late convex hulls, buffers and equistant station grids is included.

(De)serialization

The complete optimization run including all input parameters (velocity
model, raytracer parameters/output, optimization parameters/output, ...)
can be easily serialized to a single file. Results are therefore fully reproduc-
ible at a later time and can easily be loaded/plotted again.

Convenience Command Line Tools

pyNetOpt3D provides command line tools to quickly print/plot an optimiza-
tion run from a serialized file on disk.

Outlook
* pyNetOpt3D will be published within the coming 2-3 months with pre-compiled

NetOpt3D binaries
* NetOpt3D C codes are currently being rewritten in an effort to clean up the code, en-

hance maintainability, add new features (e.g. borehole arrays) and solve licensing
issues to enable an eventual open source release

from pyNetOpt3D.core import NetOpt
from pyNetOpt3D.models import VelocityModel1D, ScalarQModel
from pyNetOpt3D.parameters import (
 OptimizationParameters, RaytracerParameters)

setup velocity model
depths = (-0.4, 0.5, 2.2, 3.0, 14.7, 15.3, 32.7, 33.3, 100.0)
vp = (2.7, 3.5, 4.5, 6.0, 6.0, 6.5, 6.5, 8.1, 8.1)
vpvs = (1.86, 1.86, 1.86, 1.73, 1.73, 1.73, 1.73, 1.73, 1.73)
v_mod = VelocityModel1D(z=depths, vp=vp, vpvs=vpvs)

setup Q model
q_mod = ScalarQModel(
 kappa_p=0.007, kappa_s=0.016, q_p=2736, q_s=1216)

net_opt = NetOpt(velocity_model=v_mod, q_model=q_mod)

setup earthquake data, place below well heads in this example
wells = [
 ('Unterhaching', 11.64121, 48.05612, 3.0),
 ('Oberhaching', 11.56268, 48.01986, 3.0),
 ('Pullach', 11.50123, 48.04140, 3.0),
 ('Taufkirchen', 11.62067, 48.02347, 3.0),
 ('Kirchstockach', 11.68795, 48.02732, 3.0),
 ('Duerrnhaar', 11.72620, 47.99629, 3.0)]
for name, lon, lat, depth in wells:
 net_opt.add_event(lon, lat, depth, magnitude=1.5, fps=None)

setup station perimeter and grid, assign noise levels
net_opt.set_station_perimeter_from_events(buffer_in_km=8)
net_opt.set_potential_stations_from_station_perimeter(
 grid_spacing_in_meters=1100, grid_type='equidistant_triangular')
net_opt.set_potential_stations_noise_from_npy('noise_munich.npy')

optionally, adjust raytracer parameters
net_opt.raytracer_parameters = RaytracerParameters()
net_opt.run_raytracing()

set optimization parameters (annealing schedule, ...)
opt_params = OptimizationParameters(number_of_new_stations=6)
net_opt.optimization_parameters = opt_params
net_opt.run_optimization()

serialize optimization (for later reuse) and plot
net_opt.save('example.netopt.npz')
net_opt.plot(filename='example.png')

Left: Example use case for moni-
toring network optimization.
Arrangement of six closely
spaced deep geothermal dou-
blets near Munich, Germany.

Right: Station perimeter around
injection well open-hole sec-
tions as hypothetical event loca-
tions with equidistant station
grid (excluding locations with-
out power grid access). Noise
model by Kraft (2016) was used
to estimate noise levels at po-
tential stations. Optimum net-
work shown as hollow triangles.

Left: Final network realization
after test measurements in sev-
eral locations for each station.

Bottom: Microseismicity ob-
served by the network. Events
with magnitudes below zero
could be observed despite the
low number of stations owed to
the diligent network design.

References:
Hardt, M., & Scherbaum, F. (1994). The design

of optimum networks for aftershock record-
ings. Geophysical Jour-nal International,
117(3), 716-726.

Kraft, T., Mignan, A., & Giardini, D. (2013). Op-
timization of a large-scale microseismic
monitoring network in northern Switzerland.
Geophysical Journal International, 195(1),
474-490.

Kraft, T., A high-resolution and calibrated
model of man-made seismic noise for
Europe, 76. DGG annual meet-ing, Münster,
16. March 2016

This project is funded by

swiss energy
in the framework of project

 GEOBEST-CH

