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Results

For the conditions considered in this study of 

nuclear waste disposal in a low permeability clay 

formation, the temperature increase imposed 

by the simulated heat releasing spent nuclear 

fuel contained in the canisters results in relevant 

changes in pore pressure(>1 MPa). The formation 

hosting the disposal site is heated, up to 10-40oC, 

and pressurized, up to 1-5 MPa, during the first 

centuries of operation of the repository. The 

simulations showed how the combined stress 

transfer effect of thermoelastic and poroelastic 

stress change, with marginal contribution coming 

from the pore pressure diffusion, can create a 

nucleation patch of a seismic event on a fault 

located below the repository, outside the disposal 

formation. This lead to the possible reactivation 

of a fault located at a lateral distance from the 

outermost tunnel on the order of hundreds of 

meters (up to 500 meters), given a critical local 

stress ratio Sh/SV (0.635 or less). Moreover, the 

simulations showed that reactivation is delayed 

with the increasing distance of the fault from the 

repository, but a delayed reactivation may rupture 

a slightly larger section of the weak structure, due 

to the thermal conduction resulting in a bigger 

volume of clay formation undergoing temperature 

changes. The thermoelastic and poroelastic 

response to temperature changes and thermal 

pressurization result then in an increased section 

of fault affected by a shear stress increase.
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Above: Coulomb failure stress evolution, for a fault dipping 65

degrees in a stress regime Sh<SH<SV

 Top Overburden Clay formation Underburden Bottom 

Thickness (m) 550 75 150 75 1150 

Density (kg/m3) 2430 2430 2430 2430 2430 

Young’s mod. (GPa) 37 8 12.7 8 9 

Poisson’s ratio 0.27 0.27 0.2 0.27 0.27 

Permeability (m2) 10-18 10-15 
//3 × 10-19 

T 6 × 10-20 
10-15 10-15 

Porosity (%) 10 10 7.4 10 1 

Specific Heat (J/KgoC) 920 920 920 920 920 

Thermal conductivity 
(W/M/oC) 3.2 3.2 3.2 3.2 3.2 

Thermal expansion 
coefficient (1/oC) 2.00×10-5 2.00×10-5 2.00×10-5 2.00×10-5 2.00×10-5 

Pore compressibility 
(1/Pa)   10-9   

Pore expansivity (1/oC)   1.4×10-3   
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Constant stress
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Elastic, hydraulic and thermal properties of the model units:

Fault and beddings included as ubiquitous 

joints (embedded oriented joints in FLAC3D).

  Mohr Coulomb   
before/after rupture

 Clay 
beddings Fault 

Dip 0 80 

Friction angle (o) 20/20 20/20 

Cohesion (MPa) 5.6/1.8 0.35/0 

Dilation angle (o) 0 0 
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The problem is modelled via linking of FLAC3D to TOUGH2
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Introduction
The geological storage of high-level radioactive 

waste has been evaluated to be the safest 

option in the long term by a number of 

nations, among them Switzerland. With this 

work, we present results on the assessment 

of thermoelastic stress and pressure changes 

influence on the stability of a nearby fault, 

to evaluate if and when rupture take place.

Laboratory and field scale experiment show 

that the heat produced by the nuclear waste 

is affecting the rock mass not only by means 

of an increase in temperature, but also by 

a strong pressurization that takes place 

in the first couple of thousands of years.

Tunnel diameters: from 10 to 2-3 meters

Tunnel spacing:40 meters or more

Frictional behavior of dry sheared pulverized fault gouge

Schematic representation of emplacement tunnels: each tunnel will be filled with vitrified

waste canisters, designed to mantain integrity and to sustain temperature increase by material decay

Stress state at two different locations in North Switzerland, 

approximated location Clay formation in light purple.

Figure from NAGRA NTB 02-02

Figure from NAGRA NTB 00-01Figure from Vietor et al. (2012)

Figures from Orellana et al. (2018)

Can a deep geological repository in a clay 
formation maintain its integrity and still 
reactivate a nearby fault?
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