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4. Signal-to-Noise Ratios (SNRs)

1. Introduction

« 498 channels are recorded that span the 198m of cable. * We |ocate the hammer shots using a 2D grid-search

Distributed Acoustic Sensing (DAS) has gained increasing attention in recent years as a cost- SNRs are calculated in the time (Fig. 5) and frequency ]
effective monitoring technique of induced seismicity. DAS exploits the naturally occurring Rayleigh (Figs. 6 & 7) domains for geophone and DAS recordings. v R
backscattering of coherent laser radiation for probing the dynamic location of natural Time Domain ol : ) '“-v._._
inhomogeneities in the glass structure of the optical fibre. This modulates with the impingement of e 0.2s time windows are taken around the signal and noise. M
incident acoustic waves and can hence record seismic events (Fig. 1). * The average power of these windows (P & P, are taken: B t_# v ::2?8 o472
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* Low infrastructure and deployment costs. o P Is calculated as: B o TR T T
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* Near real-time continuous recordings. | & e . N o B0k = I
* Simple installation of cheap, lightweight and | > K Propagating frequenc:]( Domarl]n | ) o o e ;O o
rugged optical fibre cable. | Saveen - . — * At eac DA§ channe /geop one, amp itude spectra of the oo
+  High sampling resolutions (e.g. <0.5m, 40kHz). e u.nflltered signal anc?l ’Flme windows are computed. FieuresiTimalDomainSNRS
+ Robustness (operational at high temperatures Figure 1. Cartoon of Rayleigh backscattering * Signal spectra are divided by the noise spectra. coreuied T BAS il maerslhans
and pressures and in harsh chemistries). in an optical fibre cable. , : data at 3 shot locations.
e <Figure 6.
Challenges remain that limit the usefulness of DAS however, such as high noise-floors and —Gaoe L P SNRs of 3 56
directional insensitivity to ‘broadside’ (orthogonally incident) waves. Despite this, the vast potential | ttm 'h,:"‘*_l’,. stacked shots .
of DAS is of high interest to many microseismic monitoring applications but to date there has been . I,— ’\ff'\\\.\}:gi/fav/f at [ for 6 .
little research into its use for monitoring induced seismicity at Carbon Capture & Storage (CCS) sites. | ’/]L//‘fff ,\\/zf;’f;\,'\\/'\,'\‘ i geophones R ;
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In this study we perform field tests using a DAS recording system developed by CMR to record man- %“)/ . the 6 closest : = 2
made (sledge) hammer blows at the surface. These represent the preliminary trials in a % et o l | ' DAS channels gw — | 10 2
collaborative project with the scope to monitor active CCS sites in the future. *‘ A |V i ' i (solid). é = 15
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* The DAS cable is laid out at the surface from the T AT | 1" ' LU LA ?rcgrrr;allrLSNRs oottt :
interrogator unit at point x0 through A to N (Fig. 2). o | i 1 —— distancey N 0 100 2°°Freqﬁfﬁcy (ijf) 0040045000
* The laseris fired with a pulse repetition rate of 40kHz 0 : — L :
(temporal sampling rate) from xO. s+ Out l ]
 The chosen time stamp between data points of 4ns E sl Bosgds i |
gives a constant spatial sampling of ~0.4m. z .| : |
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* At present we cannot constrain the absolute locations of °l i d Ioce.ation .algorithm with nodal spacings ,Of 0.5m. Figure 8. Exa.mp.)le of th.e STA/LTA
the recording channels and hence the 498 channels are 5 * ) Arrlve?l plcks.are made autome.atlcally using an STA/LTA SUHRNTENTEe] (I8 U
of ) algorithm with STA and LTA window lengths of 0.05

mapped to xy coordinates through interpolation along

L/ | | | . and 0.5s and a trigger threshold of 2 (Figs. 8 & 9).
the Cable' 5-5 Q. 5 10 15 20 25 30 35 40 45 o T . tl > 2 fth . I t. f h §2000
 Hammer blows are performed at 3 locations: I, IIl & V. X0 E (m) rgser ou. I€fS > 20 OTthe Mean arrival time ot €ac g
. : : shot are discarded.
* Data acquisitions are ~10s that cover 3 hammer blows. | Figure 2. The cable and sampling , , , [
. _ * Triggers from a single shot are used for each location
6 geophones are installed to supplement the DAS data points (black), geophones (blue) and , o
. ! _ run with equal weightings. A;
at locations 1-6. hammer blow (red) locations. . o o . :
* An equal-differential time minimisation function is 2o
. applied. i
3. Data Processi ng « A homogenous velocity model is assumed of 250m/s. °
Our data processing routine follows: 5| e ekt I € Figure 9. An
* Data are decimated temporally from 40kHz to 10kHz with an anti-aliasing filter. z LR w0 example of the
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* N.B. We observe that applying the anti-aliasing filter as a part of the decimation process : \';;lf,l. ,,r-:_"e:,;!,:. B STA/LTA triggers
improves data quality and SNRs in comparison to recording at lower rates (downsampling). Es ':'i\. il o 1171° ( determined along the
 Traces are detrended and the mean is removed. ot i & N cable and used in the

* A 1% cosine taper and a 3™ order band-pass Butterworth filter between 20 and 200Hz are
applied (Figs. 3 & 4).
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6. Conclusions . :
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* Coherent seismic arrivals are observed at up to 32m with frequency content up to ~500Hz. [T sEJ s ” N
 Signal to Noise ratios for DAS channels at a given distance are ~ 1/, those of the geophones. atd, S0 10 s 5
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* An automated STA/LTA picking algorithms is able to define reasonable seismic onsets. and V 5 - I il
e We are able to locate the hammer shots to within 3.9m of the actual source locations. (stars). o i
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* Although using interpolation to define channel locations works sufficiently here, it is important

(
for future work that we are able to better constrain absolute DAS channel locations in space.
* This will allow us to better constrain source locations and to investigate the sensitivity of the 7- OUtIOOk
acoustic signal with incidence azimuth. : , :
 These initial tests are encouraging and the project will refine the DAS recording system and the Further f|eId/I.ab experlments planned in 291_7'2018: , o
 Asecond field trial at Norsar to test additional cable types (e.g. helical), varying interrogator

understanding of its optimum use for CCS monitoring. . . .
parameters, longer data recordings and methods to constrain absolute channel locations.
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