High-resolution analysis of seismicity patterns in microearthquake sequences using waveform similarity methods

Verena Simon⁽¹⁾, Toni Kraft⁽¹⁾, Tobias Diehl⁽¹⁾, Marcus Herrmann⁽¹⁾, and Stefan Wiemer⁽¹⁾

(1) Swiss Seismological Service, ETH Zürich, Switzerland (🖂 verena.simon@sed.ethz.ch)

Current challenges

One of the unsolved challenges for deep geothermal projects is how to migitate large magnitude induced earthquakes (LMIE).

Forcasting LMIE potential and occurrence is limited by:

- . Geological and hydromechanical conditions in the subsurface cannot be mapped sufficiently well with current technology
- 2. Processes underpinning induced seismicity and earthquake nucleation in general are still not understood due

Analysis workflow for induced and natural earthquake sequences (shown for the natural earthquake sequence of Diemtigen)

Template matching \rightarrow improve detection sensitivity and magnitude consistency

- Start: Routine catalog of the Swiss Seismological Service (SED) with located events of the sequence
- Dynamically assemble a template set to perform a matched filter analysis on the station with best SNR.
- TM-scan: Available recording history with SDSnet standard: since 2002.
- Allows to detect events with several orders of magnitude below the SED catalog detection threshold
- Magnitudes are determined by amplitude-magnitude

to i.e.

- insufficient sensitivity of routine seismic catalogs
- incomplete catalogs for small magnitudes that impede to resolve precursory patterns

LMIE rarely exceed magnitudes M4

 \rightarrow precursory seismicity that could improve our understanding of LMIE physics and the migitation of LMIE cannot be resolved in detail

Example: Basel EGS site

Stimulation of a reservoir for an Enhanced Geothermal System

regression for each template group using the SED catalog events.

Relocation \rightarrow improve location precision

• Double difference relocation with subset of the detections

above configurable magnitude and SNR threshold.

- Differential arrival times
- Earthquake relocation depends on a minimum number of arrival time picks from at least 4 stations
- Detections from template matching do not have arrival time picks
 - \rightarrow Waveform similarity assures a good
 - approximation of the expected arrival time
- \rightarrow Time-shift of arrival-time pattern of the template to the associated detections
- Fine adjustment of approximate arrival-time picks by cross-correlation with SNR and cycle skipping quality check

station

WIMIS

LAUCI

FIESA

Template 1

with existing arrival time picks for P and S associated with template 1

Detectior

arrival time picks for P and S

Earthquake 2015-0-15

± 8.2

migration

• HypoDD-software [3]

Statistical Analysis

- Temporal variation of a- and b-values and earthquake probabilities
- Window length of 50 events moves through whole catalog event by event
- Take the decrease in b-value before main shocks as a starting point to study the spatial variation of immediate foreshocks

Earthquake 2014-10-15

- (EGS)
 - Fluid injection into crystalline rock below city of Basel in december 2006
 - M_1 2.6 and M_1 3.4 earthquake after 6 days
 - \rightarrow well opened and seismicity decayed
 - Project canceled in december 2009
 - Template matching scan with deepest installed borehole station (2.7 km) which is located \approx 2 km from the \approx 4.5 km deep reservoir

2014-12 2015-02 2015-04 2015-08 2015-10 2014-04 2014-06 2014-08 2014-10 2015-06 Time

Spatial evolution of immediate foreshocks

10

Repeating earthquake analysis

- Waveform similarity > 0.9
- Hypocenter separation < 40 m (which corresponds to our
- estimated location error)
- Ideally overlapping source radius Estimation of interevent times
- The analysis may help us to: \rightarrow quantify loading by aseismic
- slip \rightarrow discriminate between different forcing types (e.g. injection vs. earthquake-earthquake interaction)

Cluster activation

Advantages of the workflow

- An unexpected seismic response to a geothermal operation could be detected and located much faster.
- High station network around geothermal sites would allow to resolve precursory patterns even better than in natural earthquake sequences.
- The background seismicity could be evaluated with higher certainty before the start of a geothermal reservoir development and exploration.
- We will take advantage of the high similarity of natural and induced sequences and will further develop our workflow on natural earthquake sequences in Switzerland.

• Real-time application is currently implemented in the framework of the RAMSIS-RT project at SED.

Systematic classification of Swiss earthquake sequences

- Systematic characterization of induced (e.g. Basel, St. Gallen, Schlattingen) and natural earthquake sequences
- Systematic analysis of Swiss catalog earthquakes of last 15 years
- Identification of seismicity patterns and their correlation with geology and seismotectonics
- Benefit from dense network: GEOBEST-CH

References

Simon, V., (2017). High precision analysis of natural earthquake sequences in Switzerland. Master Thesis, IDEA League, Appplied Geophysics, ETH Zurich [1]

- Herrmann, M., T. Kraft, T. Tormann, L. Scarabello, and S. Wiemer (2019). «A Consistent High-resolution Catalog of Induced Seismicity in Basel Based on Matched Filter Detection and Tailored Post-processing.» Submitted to Journal of Geophysical Research: Solid Earth
- Waldhauser F. and Ellsworth W. (2000). A double-difference earthquake location algorithm: Method and Application to the northern Hayward fault, California. Bulletin of the Seismological Society of America
- S. Nielsen, J. Taddeucci, S. Vinciguerra; Experimental observation of stick-slip instability fronts, Geophysical Journal International
- A. Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, N. Hirata. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki Earthquake Science [5]