Poro-elastic and Earthquake Nucleation Effects in Injection Induced Seismicity

Paul Segall, Shaoyu Lu, Kyung Won Chang Department of Geophysics, Stanford University

Stanford | Stanford Center for Induced and Triggered Seismicity

School of Earth, Energy & Environmental Sciences

Motivation

Injection induced seismicity (IIS) has historically been interpreted in terms of pore-pressure diffusion and changes in **effective normal stress**, changing fault strength via:

 $\tau = c + f(\sigma - p(t))$

Questions:

Shapiro and Dinske (2009)

•Poro-elastic effects are thought to dominate production induced seismicity. How might poro-elastic effects influence IIS? $\tau(t) = c + f(\sigma(t) - p(t))$

• Laboratory stick-slip events exhibit time dependent nucleation. Is the space-time pattern of IIS solely due to pore-pressure diffusion?

Injection Model

 Point source injection in homogeneous, poro-elastic full space

- Uniformly distributed and oriented faults
- Fault hydraulic properties same as background

Point Injection Source in Homogeneous Full Space Rudnicki (1986)

Injection flux

$$p(\vec{x},t) = \frac{C_1}{r^3} \int_0^t q(t')\xi^3 e^{-\frac{1}{4}\xi^2} dt'$$

$$C_{1} = \frac{(\lambda_{u} - \lambda)(\lambda + 2\mu)}{(4\pi)^{\frac{3}{2}}\rho_{0}\alpha^{2}(\lambda_{u} + 2\mu)} \qquad \xi \triangleq \xi(t - t') = \frac{r}{\sqrt{c(t - t')}}$$

$$F_{ij}(\vec{x}, t) = \frac{C_{2}}{r^{3}} \int_{0}^{t} q(t') \left[\delta_{ij}(g(\xi) - \xi g'(\xi)) + \frac{x_{i}x_{j}}{r^{2}} (\xi g'(\xi) - 3g(\xi)) \right] dt'$$

$$C_{2} = \frac{\mu(\lambda_{u} - \lambda)}{2\pi\rho_{0}\alpha(\lambda_{u} + 2\mu)} \qquad g(\xi) \triangleq \operatorname{erf}\left(\frac{1}{2}\xi\right) - \frac{\xi}{\sqrt{\pi}}e^{-\frac{1}{4}\xi^{2}}$$

Total Stress Changes!

For constant flux, $q(t) = q_0$, integration can be done exactly

Poro-elastic Stress

Seismicity Rate Theory [Dieterich, 1994]

$$\frac{dR}{dt} = \frac{R}{t_a} \left(\frac{\dot{\tau}_c}{\dot{\tau}_0} - R \right)$$

 $\begin{array}{ll} R & \mbox{Seismicity rate relative to background rate} \\ \tau_c = \tau - f\sigma & \mbox{Coulomb stress}, f \mbox{ is friction coefficient} \\ \dot{\tau}_0 & \mbox{Background stressing rate} \\ t_a \equiv a\sigma/\dot{\tau}_0 & \mbox{characteristic decay time, and } a \mbox{ constitutive parameter} \end{array}$

Seismicity Rate Theory [Dieterich, 1994]

$$\frac{dR}{dt} = \frac{R}{t_a} \left(\frac{\dot{\tau}_c}{\dot{\tau}_0} - R \right)$$

 $\begin{array}{ll} R & \quad \mbox{Seismicity rate relative to background rate} \\ \tau_c = \tau - f\sigma & \quad \mbox{Coulomb stress}, \ f \ \mbox{is friction coefficient} \\ \dot{\tau}_0 & \quad \mbox{Background stressing rate} \\ t_a \equiv a\sigma/\dot{\tau}_0 & \quad \mbox{characteristic decay time, and } a \ \mbox{constitutive parameter} \end{array}$

Properties of the Seismicity Model

- At Steady state: $R = \dot{\tau}_c / \dot{\tau}_0$.
- For rapid stressing: $R = \exp(\tau_c/a\sigma)$.
- Following rapid change: $R = [e^{-\Delta \tau / a\sigma} + t/t_a]^{-1}$ Omori Law
 - Models nucleation only; does not predict magnitude

Effect of Poroelastic Coupling

Seismicity Onset Time

 $R(\boldsymbol{x},t) \approx \exp[fp(\boldsymbol{x},t)/a\sigma]$

Seismicity Rate: Finite Duration Injection

• Post shut-in rate increase

Increased Rate Following Shut-in

Poro-elastic Stress

Coupling Induces Stress Changes

Pore pressure change $f \Delta p$

Chang and Segall, JGR, 2016

Seismicity rate R on fault zone

Chang and Segall, JGR, 2016

- Probability of triggering a fault of a given size, depends on volume of perturbed zone hence time (e.g., Baisch 2010; Shapiro et al, 2013, Dieterich et al, 2015).
- Induced earthquake magnitudes follow Gutenberg-Richter, independent of time ([Van der Elst, 2016)

Background Stress Level Determines Rupture Extent

Fang and Dunham, Additional shear resistance from fault roughness and stress levels on geometrically complex faults, JGR 2013

Predicted Magnitudes

(see also Baisch 2010; Shapiro 2013)

Magnitude Time Effects

Simulation of Magnitudes

Shut in

Predicted Frequency Magnitude

Simulation

Basel

(Bachmann et al, GJI 2011)

Conclusions

Poro-elastic stresses may either increase or decrease seismicity rate, depending on geometry.

Seismicity onset follows pore-pressure front, although naïve considerations can bias diffusivity to high values.

In some cases sudden shut-in may locally increase seismicity rate.

In low background stress environments, larger events are likely to occur post shut-in, complicating "stop light" mitigation strategies.

Simulations exhibit frequency magnitude statistics similar to some observations.

Injection Into Layers above Basement Faults

- Normal Faults in basement rocks
- Plane strain

Chang and Segall, JGR, 2016

Poroelastic stress change $\Delta \tau_s + f \Delta \sigma_n$

Chang and Segall, JGR, 2016

Dynamic Rupture into Low Stress Surroundings

Schmitt, Segall, and Dunham JGR, in review

Dynamic Rupture into Low Stress Surroundings

Rupture Extent & Shear to Effective Normal Stress

Schmitt, Segall, and Dunham JGR, in review

Gradual Shut-in Mitigates Rate Peak

Seismicity Onset Follows Pore Pressure Front

Decay in Seismicity Rate Following Peak

Soultz, 1993 (Shapiro et al, 2002)