Geothermal induced seismicity: What links source mechanics and event magnitudes to faulting regimes and injection rates?

2nd Schatzalp Workshop on Induced Seismicity, 2017

Motivation

- Non Double-Couple (NDC) components describe more accurately the seismic deformation
- Identification of tensile openings allow for monitoring of the desired permeability enhancement in EGS
- NDC are difficult to detect!

Main Goal:

Analysis of large number of MTs to investigate earthquake source-types in relation with the local state of stress and the hydraulic activities nearby

The NW Geysers geothermal field

- ≈ 4000 EQ/yr since 1960s
 M_w (1.3 4.8)
- Mechanisms:
 a) Thermal fracturing
 b) Small pressure changes
- Selected area:
 -2 injection wells

GFZ

Helmholtz-Zentrum

- -869 MTs M_w [0.8 3.5]
- Input data manually processed

3/13

HybridMT moment tensor calculation

Iterative refinement of MTs by removing path effects and correcting for wrong sensor gain

GFZ Helmholtz-Zentrum

Uncertainty assessment and results

- 200 MTs solutions per event perturbing:
- P amplitudes \rightarrow Noise
- Takeoff angles \rightarrow V model
- Polarities \rightarrow Pick errors

for 65% of the MTs

68% with + %ISO & %CLVD

15% with - %ISO & %CLVD

Overall NDC uncertainty: $\pm 7\%$

5/13

San Andreas (movie)

Source types and faulting kinematics

2nd Schatzalp Workshop on Induced Seismicity, 2017

GEMEINSCHAFT

Source types and magnitudes

GFZ Helmholtz-Zentrum

2nd Schatzalp Workshop on Induced Seismicity, 2017

7/13

GEMEINSCHAFT

+ ISO and injection rates

- Increases during high injection rate periods
- Enhanced at smaller distances from open-hole sections

- Long-term increase
- Related to pore pressure increase?

Helmholtz-Zentrum

+ CLVD and injection activity

- No clear relation with injection rate
- Decreasing with distance from openhole sections
- Long-term decrease

- A Enhanced damage around open-hole sections ?
 - **B** Multiple events occurring in conjugate faults ?

NDC components and seismic velocity

$$\kappa = \frac{4}{3} \left(\frac{\% ISO}{\% CLVD} - \frac{1}{2} \right) = \frac{\lambda}{\mu} = \frac{V_P^2 - V_S^2}{V_S^2}$$

- During high injection, the elastic fault properties are different
- The ${}^{V_P}/_{V_S}$ ratio is increasing (as observed for the whole field)

MTs of M>2 events at the Salton Sea

2nd Schatzalp Workshop on Induced Seismicity, 2017

Helmholtz-Zentrum Potsdam HELMHOLTZ

Summary of results

Analysis of 869 moment tensors from NW The Geysers geothermal field

12/13

2nd Schatzalp Workshop on Induced Seismicity, 2017

Helmholtz-Zentrum

Thank you for your attention !

NonDC results:

Martínez-Garzón, P., G. Kwiatek, M. Bohnhoff, and G. Dresen (2017). Volumetric components in the earthquake source related to fluid injection and stress state, *Geophys. Res. Lett.*, 44

Hybrid MT:

Kwiatek, G., P. Martínez-Garzón, and M. Bohnhoff (2016). HybridMT: A MATLAB/Shell environment package for seismic moment tensor inversion and refinement, *Seismol. Res. Lett.*

GFZ I acknowledge **Helmholtz Postdoc Programme** fellowship for funding, North California Earthquake Data Centre for seismic data and Calpine Ltd. for hydraulic data.

Other slides

NDC in natural and induced seismicity

2nd Schatzalp Workshop on Induced Seismicity, 2017

Helmholtz-Zentrum Potsdam

Distribution of - NDC components

- ISO and CLVD tend to decrease during high injections

 ISO and CLVD tend to cluster around the openholes

A Thermal shrinking?

B Other processes ...?

2nd Schatzalp Workshop on Induced Seismicity, 2017

Hybrid-MT Moment tensor calculation

2nd Schatzalp Workshop on Induced Seismicity, 2017

6/16 **HELMHOLTZ**

HybridMT moment tensor calculation

Iterative refinement of MTs by removing path effects and correcting for wrong sensor gain

$$r_{ij} = u_{ij}^{\text{th}} / u_{ij}^{\text{obs}}$$

$$^{\text{obs}} = u_{ij}^{\text{obs}} + w_i u_{ij}^{\text{obs}} (\tilde{r}_i - 1)$$

Explosion

Implosion

Iteration #

5/14

 $u_{ij}^{*,}$

Iteration: 1

LVD (+

CLVD (+)

Kwiatek et al., 2016

Tensile Crack

2nd Schatzalp Workshop on Induced Seismicity, 2017

CEVD (-)

LVD (-)

Anticrack

Stress field change during peak injections

2nd Schatzalp Workshop on Induced Seismicity, 2017

Helmholtz-Zentrum Potsdam

Azimuthal distribution of seismicity

- Hypocentral distance increase during peak injections
- Fracture network aligned with S_{HMax}

