Aseismic fault slip and leakage preceding an earthquake induced during an in-situ fault reactivation experiment in the Opalinus Clay, Mont Terri rock laboratory, Switzerland

Christophe Nussbaum¹, Yves Guglielmi², Louis De Barros³

Jens Birkholzer², Frederic Cappa³

¹ swisstopo, Swiss Geological Survey, Wabern, Switzerland,

² Lawrence Berkeley National Laboratory, Earth & Environmental Sciences Area,

Berkeley, USA

³ Géoazur, University Côte d'Azur, Sophia Antipolis, France

The Mont Terri underground rock laboratory – located in the Alpine foreland (Jura thrust-and-fold belt)

Schinznach Formation

Zeglingen Formation

Kaiseraugst Formation Permo-Carboniferous sediments ?

Basement undifferentiated

-1500

2000

thrust planes extensional faults 2500

3000

3500

4000

4500

5000

5500

7000

7500

9500

10000

10500 m

The Mont Terri Consortium: a critical mass of scientific and technological knowledge

- 16 Partners from 8 countries (status in March 2017)
- Operated and under the lead of the Swiss Confederation (swisstopo)
- Implementers and (regulator) safety organisations
- But also oil companies and geological surveys
- More than 1000 scientists, engineers and technicians

Geological context of the stimulated fault zone Opalinus Clay a shale formation used as host rock and caprock

after Nussbaum et al., 2017 **Decametre-scale controlled fault**

activation experiment

Objectives:

- In situ study of the aseismic-to-seismic activation of a fault zone in a clay/shale formation
 - Conditions for slip activation and stability of faults
- Implications of fault slip on fault permeability
 - Evolution of the coupling between fault slip, pore pressure, and fluid migration
- Tool development and test protocols
 - Development of a tool and protocol to characterize the seismic and leakage potential of fault zones in clay/shale formations

Geometry of the Main Fault

A ~1-5 m-thick core with gouge + secondary (Riedel-like) shear planes A damage zone with secondary fault planes with slickensided surfaces

after Thöny, 2014, Jaeggi et al., 2017

travel time (us)

Methodology: Borehole near-field protocols

Rock Mech Rock Eng DOI 10.1007/s00603-013-0517-1

ISRM SUGGESTED METHOD

ISRM Suggested Method for Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Using a 3-Components Borehole Deformation Sensor

Yves Guglielmi · Frederic Cappa · Hervé Lançon · Jean Bernard Janowczyk · Jonny Rutqvist · C. F. Tsang · J. S. Y. Wang

- Injection pressure imposed step-by-step in packed-off intervals set in different fault zone locations
- Synchronous monitoring of pressure, flowrate, displacement and micro-seismicity

Experimental setup

Measurement of fault movement and induced seismicity

0.49 m

Passive Seismic Monitoring

Two downhole 3Caccelerometers and two geophones Step-Rate Injection Method for Fault In-Situ Properties (SIMFIP) Guglielmi et al., 2013

Two 3C-borehole deformation sensor mHPP probe

- 3C-accelerometers
- Flat response 2Hz-4kHz
- 10 kHz sampling frequency

- Resolution of 3µm
- 500 Hz sampling frequency

3D Displacement of fault hangingwall below and above FOP

Seismicity observed during fluid pressurization

- Occurs along the interface between fault core zone and damage zone
- Occurs after the Fault Opening Pressure (FOP) is reached

One main earthquake followed by swarm of ca. 15 smaller events

Spectral analysis and corner frequency of the main EQ

Complex fault movement induced by fluid pressurization

- Alternate slip, no-slip periods and one high-dilatant event
- ~75% of the movement is aseismic
- Large pressure drop (2 MPa) is preceding the induced seismicity
- Seismicity only occurs « last » and is not correlated to significant changes in slip velocity or to the dilatant event

Impact of fault movement on permeability

- Factor of 10⁶-to-10⁷ transmissivity increase above the Fault Opening Pressure
- Observed in all injection test sections except for the fault core (injection 3)

- All fault segments were activated in normal faulting mode in injections intervals
- Seismicity was triggered during injection 2 for the highest slip magnitude (0.4 mm)

Guglielmi et al. 2016

Stress transfer and effective Coulomb stress effects

Slow ruptures of faults and fractures:

- Radiate low or « unconventional » seismic waves
- Represent large seismic moment in the total rupture
- May be associated to fluid pressurization, to significant permeability increases, and to variation in fault rock strength

Summary and Preliminary Findings

- Multiple fault reactivations have been produced in situ that allow evaluating mechanisms of faulting and microseismicity induced by increased fluid pressure during injection operations
 - Factor of ~100 variation of the slip magnitude depending on location
 - Multiple dilatant slow slip (~ 0.1-to-30 μm/s) associated with fluid pressurization with factor-of-1000 increase of permeability, and terminated by a magnitude ~ -2.5 main seismic event associated with a swarm of very small magnitude ones.
 - Size of seismic source (r ~ 1.2 m) << size of pressurized zone (r ~ 5-7 m)
- Small (micrometer to millimeter) fault displacements are associated with large permeability variations
 - Though a large fraction of the permeability variations seems reversible
 - Seismic events may not be a reliable indicator for fault leakage

Next experiment (FS-B): Imaging slow rupture effects on the loss of integrity of caprocks

• Seismic patch radius

Acknowledgments

Paul Bossart (swisstopo) Bastian Graupner (ENSI) Kazahiro Aoki (JAEA) Jens Birkholzer (LBNL) Klaus Wieczorek (GRS)