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Swiss Energy Strategy 2050: supply targets

Can we extract safely the deep
geothermal heat and produce at
competitive costs 7% of the
national baseload supply ? 

Can we increase (i.e. by 10%) the present
hydropower electricity production under changing
demand, climate and operating conditions ?

Is the geological capture of CO2 a 
viable measure to enable carbon-free
generation of electricity from
hydrocarbon resources ?
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DGE challenge #1: deep water resources 

hydro-
thermal

petro-
thermal

 High-enthalpy volcanic
areas are few, limited and
far between – Iceland, 
Italy – and cannot provide
electricity to the whole
Europe

 In many areas, 
hydrothermal DGE has
great potential for heating, 
less so for electricity
 water is scarse and not 
easily found

 We need to create deep
reservoirs in hot rock (EGS) 
and circulate water from
the surface
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DGE challenge #2: efficiency, scaling up

Hot rock at depth is an unlimited resource, but ...

 The Carnot efficiency of the system is low compared to most other sources 
of electricity; the overall net efficiency of the conversion of heat to 
electricity in a DGE plant is expected to be (today) around 13-15%

 Under normal conditions, in Switzerland we find 170-190 C in crystalline
basement rocks at 4-6 km depth

 A sustained water flow of 220 l/s at 180 C is required to generate 20 MWel

 The Swiss ES2050 target for DGE is 7% of Swiss electricity supply
 4.4 TWh/yr, >500 MWel installed

 The EU-28 area consumes 3'200 TWh of electricity per year; a 5% share of 
DGE would correspond to an installed capacity of the order of 20 GWel

 Europe will need 1’000 20MWel plants to meet the 5% quota

 Switzerland will need 25 20MWel plants to meet the 7% quota
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DGE challenge #3: engineering the reservoir

The main challenge is to create a sustainable heat

exchanger at depth, a system that will operate for

20-40 years with no or minimal loss in flow, 

temperature and efficiency.

New approaches are required to enhance rock 

permeability, with optimal distribution of micro-

cracks and porosity to maximize heat exchange, 

swept area and water circulation. 
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 Spain, 2011: the largest damaging quake in decades is associated with 
long-term ground-water extraction in Lorca

 Holland, 2012: Induced seismicity in Groningen, the largest on-shore gas 
field in Europe, is increasing and is forcing lower extraction rates, with 
significant impact on Dutch GDP and European supply

 Switzerland, 2006 and 2013: Induced seismicity released during a EGS 
stimulation (Basel) and hydrothermal injection (St.Gallen)

 UK, 2011: Felt seismicity stopped hydro-fracking in Blackpool

 Italy, 2012: 14 BE damage and 24 casualties from a sequence of M5-6 
earthquakes, possibly associated to hydrocarbon extraction

 Spain, 2013: the EU-sponsored Castor offshore gas storage field near 
Valencia is halted after producing earthquakes during the first fill

 Italy, 2014: seismicity is induced by waste-water injection in Val d’Agri

DGE challenge #4: induced seismicity



9

DGE challenge #5: high cost

R&D is needed to reduce 

costs for successful DGE 

exploitation: innovative 

drilling technologies, energy 

techniques, improved heat 

exchange and efficiency, 

corrosion, cooling, M&O, 

reservoir engineering, 

exploration and imaging, 

life-cycle sustainability, risk 

mitigation, monitoring and 

abatement of induced 

seismicity.

Today’s costs are in the order of 40-50 cents/kWh (SFOE), 

we need to bring them down below 10 cents/kWh
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 A national Geodata Infrastructure, with 3D mapping to 5km depth

 10-yr R&D agenda: resource and reservoir exploration, assessment and
characterization; fractures and reservoir creation; reservoir modeling
and validation; induced seismicity; monitoring; well completion; 
chemical interactions and transformations, innovative, high TRL-level 
technologies

 Two classes of experimental facilities: 

i. National, distributed rock deformation laboratory to handle large 
samples at conditions found in 4-6 km depth

ii. National Deep UnderGround Laboratory infrastructure, to
conduct 10-100m scale injection experiments at depth of 500-
2‘000 m

 The installation of up to 3 deep EGS reservoirs over the next 10 yeras, 
conducted as P&D projects, with a target of 4-20 MWel installed
capacity each

DGE Roadmap
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Why a DUG-Lab ?

 To perform stimulation experiments under a fully
controlled environment at increasing depths and
realistic conditions

 To bridge between laboratory experiments (1-10 cm 
scale) and deep reservoir stimulation (1-5 km scale, 
5 km distance, little/no local monitoring, scarse
knowledge of local conditions)

 To validate protocols and safe procedures before
deployment in deep EGS

 To provide a testing ground integrating
experimental, modeling and monitoring
technologies

 To develop and test innovative methodologies for
reservoir engineering

 To increase public confidence in geo-energy
technologies
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The ISC experiment in the NAGRA Grimsel laboratory
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Instrumenting the DUG-Lab
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Procedures and time-line
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Aug. 2015 – Nov. 2016 Dec. 2016 – Mar. 2017 Apr. 2017 – end 2017
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Boreholes and Characterization
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Characterization
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Stress measurements
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Acoustic Emissions during hydraulic fracturing
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Gischig et al. (in prep.)

Talk: J. Doetsch et al.: Induced micro-seismicity observed 

during meter-scale hydraulic fracturing

Poster: D. Vogler et al.: Numerical simulations of hydraulic 

fracturing during reservoir stimulation at the Grimsel Test 

Site, Switzerland
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Monitoring during stimulation
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Six stimulations completed
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Poster: Linus Villiger et al.: Micro-seismic 
monitoring during hydraulic-shearing experiments 
at the Grimsel Test Site
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PRELIMINARY RESULTS

Stimulation effects 
measured by fiber-optic 
strain measurements (FBG) 
installed in boreholes. 
In all the experiments we 
injected over four cycles. 

In cycle 1, 2 we injected 
pressure controlled, cycle 3 
is flow controlled and 4 is 
again a pressure controlled 
cycle. The negative flow in 
the figure represents back 
flow after venting of the 
stimulated sequence.
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PRELIMINARY RESULTS

Stimulation effects 
measured by tiltmeters
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PRELIMINARY RESULTS

Microseismicity induced 
during stimulation
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Six stimulations successfully 
completed in February 2017 
(injection rates up to 35 l/min; 
injected volumes of ~1m3

Initial injectivity between 0.0006 
l/min/MPa and 0.95 l/min/MPa

Injectivity after stimulation between 
0.4 l/min/MPa and 1.6 l/min/MPa

Some stimulations with > 700 micro-
seismic events

6 hydraulic fracturing tests follow in 
May (after characterization)

Six hydraulic shear stimulations completed
Six hydraulic fracking stimulations follow in May
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Stimulation Initial 
(l/min/MPa)

Final 
(l/min/MPa)

Events

HS1 0.0006 1.1 few

HS3 0.0035 1.7 few

HS4 0.95 0.97 > 500

HS5 0.09 0.4 few

HS8 0.0019 0.5 >500

HS2 0.014 1.6 few
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Next Step: 100m-scale “Flagship” Experiment
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Next Step: 100m-scale “Flagship” Experiment
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Conclusions

 Induced earthquakes are a possible/probable consequence of the

implementation of underground technologies and the extraction of deep

geoenergy

 Deep underground stimulation experiments are a key tool to understand

rock-fluid interaction and the origin of earthquakes, a precondition to

understand and mitigate induced seismicity risk

 Large-scale, well controlled deep underground stimulation experiments

require adequate resources and personnel the DUGLab counts on 5 

dedicated senior researchers, a host of professors and participating

scientists, 5 PhD students, technical personnel, the support of NAGRA 

and of the Federal Office of Energy, and an overall budget of over 12 

MCHF for 5 years

 We need a coordinated strategy and international cooperation to

establish a network of world-class deep research infrastructures and geo-

energy testbeds
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Present and future challenges


