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we focus on integrating fracture mechanics
into estimates of magnitudes of injection-induced earthquakes

our goal is to determine how large a rupture
can grow under different conditions

rather than modeling individual cases,
our aim is to understand general principles
driven by underlying physics
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initiating ruptures in numerical simulations

nucleation of ruptures
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assumptions and concept of our approach

Intersection of fault and reservoir

Resenvoir ,ea affected by pore-pressure variation)

Fault
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pore-pressure distribution
inside a cylindrical reservoir
with no-flow boundaries
(Lee at al., 2003)

pore pressure [MPa]

2.6

0 200 400 600 800 1000

distance from center
of the reservoir [m]



assumptions and concept of our approach

e circular crack

e axisymmetric stress drop

e static stress intensity factor averaged along crack rimis
approximated by the expression for tensile cracks

» details of weakening inside the process zone are ignored -
the rupture arrest criterion is based on fracture toughness K.

condition for rupture arrest

constant stress drop
no rupture

arrested rupture
runaway rupture

Griffith crack equilibrium criterion

K,(R)=K_(R)
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verification of our approach

ruptures initiated
by overstressed regions
with different shapes
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[. semi-analytical model

conditions for rupture arrest are solved numerically

— —
o o
- N

rupture arrest area [km?]
o

a b
) | ] 1 ] | ref
Ct
[0
— — Kk
........ "
h "0
q T
102 10° 104 102 10° 104
injection time [days] injection time [days]

pore-pressure related parameters only control shift in time
shape of “rupture arrest area vs injection time” curves,
including A,,, .., @t transition to runaway ruptures,
depends only on fault-related parameters



[1. analytical model

conditions for rupture arrest are solved analytically

with additional assumptions

* pore-pressure perturbation inside the reservoir
is approximated by a point load/force

e average pore-pressure perturbation inside the reservoir
is approximated as proposed by McGarr, 2014:

Ap=K—
P %4

With these assumptions, we can estimate maximum seismic moment
and magnitude before transition to runaway ruptures as a function
of injected volume
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[1. analytical model
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[1. analytical model
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realistic scaling of fracture energy

Fracture energy (J m™2)
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therefore, incorporating scale-dependent
fracture energy into our model will require
better understanding of variability and
uncertainty associated with scaling of
fracture energy
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* using fracture mechanics, we have derived
a physical model for estimating rupture arrest size

* numerical solution of rupture-arrest condition provides insight
into roles of various parameters of the reservoir-fault system

 analytical solution of further simplified problem provides relation
between M,"*4" and injected volume, similar to McGarr, 2014,
however, while McGarr’s estimate predicts slope of 1, we find
slope of 3/2, which seems to be consistent with observations
over a broad range of injected volumes and magnitudes
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