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The median and standard deviation of empirical ground-motion prediction equations (GMPEs) are usually poorly constrained close to the seismogenic source due to the general lack of strong-motion records.
In addition, the ground-motion variability associated with a single fault is even more difficult to assess because multiple records of earthquakes generated by the same fault rarely exist. Finite-fault
simulations can represent a valid alternative to overcome the limitations of GMPEs, especially in the near-source region, where effects due to the finiteness of the source dominate the ground motion.
Directivity effects, in particular, have the largest impact on the ground-motion variability at low and intermediate frequencies, causing amplification at sites in the forward direction of the rupture. Therefore
we explore the use of a deterministic—stochastic method (DSM, Pacor et al., 2005) to predict the ground motion close to the source, assess its variability, and calibrate synthetic attenuation models including
directivity effects to be incorporated into Probabilistic Seismic Hazard Analysis (PSHA). Our results show that, for specific source-to-site configurations, the non-ergodic PSHA is very sensitive to the additional
epistemic uncertainty that may augment the exceedance probabilities when directivity effects are maximized. The proposed approach may represent a suitable way to develop novel ground-shaking models
for computing more accurate hazard estimates.
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how the global effect of the sigma reduction leads to a decrease of APEs with respect to the ergodic assumption (BI2014). The only
exception is due to the increase in the epistemic uncertainty of the median when forward-directivity effects are accounted for.
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