Overview of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3)

Edward (Ned) Field & other WGCEP participants:

Overview of the

3rd Uniform California Earthquake Rupture Forecast (UCERF3)

Edward (Ned) Field & other WGCEP participants:

Biggest Issues: previous models lacked multi-fault ruptures and spatiotemporal clustering (potentially damaging aftershocks)

NZ Canterbury earthquake sequence

O’Rourke et al. (2014)
UCERF3 Implications

Practical:

- Both multi-fault ruptures and spatiotemporal clustering are included (e.g., as basis for OEF)

- Question: is UCERF3 useful enough to be worth operationalizing? (model value depends on hazard or risk metric, and will therefore vary between applications)

Scientific:

- UCERF3 implies Gutenberg Richter is not applicable to all faults

- Combining finite faults with spatiotemporal clustering implies a need for elastic rebound/relaxation (otherwise large triggered events would simply re-rupture the main-shock rupture surface much more than we see in nature)
Working Groups on California Earthquake Probabilities (WGCEPs)

(the most official time-dependent earthquake forecasts for California)

A better and more useful approximation
Working Groups on California Earthquake Probabilities (WGCEPs)

(the most official time-dependent earthquake forecasts for California)

A better and more useful approximation

What’s wrong here?
UCERF2 Problems:

1) Assumes segmentation

2) Excludes multi-fault ruptures

3) Over-predicts M ~6.7 events

4) Elastic rebound not self-consistent

5) Lacks spatiotemporal clustering

These inadequacies were recognized in the UCERF2 report (2007), and since exemplified by several earthquakes.
Working Groups on California Earthquake Probabilities (WGCEPs)

(the most official time-dependent earthquake forecasts for California)

A better and more useful approximation

What’s the solution?
UCERF2 Issues:

1) Assumes segmentation
2) Excludes multi-fault ruptures
3) Over-predicts M ~6.7 events
4) Elastic rebound not self-consistent
5) Lacks spatiotemporal clustering

UCERF3 Solutions:

- New method supported by physics-based simulators
- ETAS Operational Eqk Forecasting
UCERF3 Publications

UCERF3-Time Independent (TI) Model

- Main report and 20 Appendices in USGS OFR 2013-1165 (also CGS Special Report 228)
- Main report & Appendix N also in BSSA (2014, vol. 104, no. 3)

UCERF3-ETAS (Spatiotemporal Clustering Model for OEF)

- BSSA (June, 2017)

UCERF3-TD (Long Term Time Dependent Model)

- Main report & two methodology papers published in BSSA (April, 2015)
- USGS Fact sheet too

http://pubs.usgs.gov/of/2013/1165
UCERF3 Publications

UCERF3-TI (Time-Independent Model):

- Main report and 20 Appendices in USGS OFR 2013-1165 (also CGS Special Report 228)
- Main report & Appendix N also in *BSSA* (2014, vol. 104, no. 3)

UCERF3-TD (Long-Term Time Dependent Model)

- Main report published in *BSSA* (April, 2015)
- USGS Fact sheet too

UCERF3-ET

- Published in *BSSA* (June, 2017; available on line)

The goal here is to define the long-term rate of every possible earthquake rupture throughout the region (at some level of discretization)
Old approach to defining long-term earthquake rates:

Assume faults are separate and cannot rupture together

Adding it all up … over prediction

Add in off-fault seismicity
We’ve now seen several multi-fault ruptures; e.g.,

2002 M 7.9 Denali Quake

2016 M 7.8 NZ Kaikoura Quake

12 to 20 different faults
And filling out the fault inventory has revealed an interconnected fault system

You can move from any point on the green fault cluster to any other point without jumping more than 5 km (the distance that theory and observations say ruptures can jump)
The UCERF3 “Grand” Inversion

1) Divide faults into subsections and define all ruptures as the set of 2 or more contiguous subsections that pass a plausibility test (e.g., fault gap ≤5km); ~250,000 ruptures compared to ~8,000 in UCERF2)
1) Divide faults into subsections and define all ruptures as the set of 2 or more contiguous subsections that pass a plausibility test (e.g., fault gap ≤5km); ~250,000 ruptures compared to ~8,000 in UCERF2)

2) Compute the \textit{Magnitude} of each rupture from its area

\textit{Example rupture:}
The UCERF3 “Grand” Inversion

3) Solve for the rate of each rupture (f_r) from a system of equations/constrains

<table>
<thead>
<tr>
<th>Equation Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{r=1}^{R} D_{sr} f_r = v_s$</td>
<td>Fault Slip Rates</td>
</tr>
<tr>
<td>$\sum_{r=1}^{R} G_{sr} p_{paleo} f_r = f_s^{paleo}$</td>
<td>Paleoseismic Event Rate (32 sites in CA)</td>
</tr>
<tr>
<td>$\sum_{r=1}^{R} M_{gr} m f_r = R_{g}^m$</td>
<td>Regional MFD Constraint (GR)</td>
</tr>
</tbody>
</table>

Other Equations

.
The UCERF3 “Grand” Inversion

3) Solve for the rate of each rupture (f_r) from a system of equations/constrains

Note: the “bulge” problem was made part of the solution – include just enough multi-fault ruptures to remove the over prediction near M ~6.7…
Add off-fault (gridded) seismicity to make a complete forecast
Data Fits (better than UCERF2):

UCERF3-TI:

✓ Fits a broader range of data better
✓ Relaxes segmentation assumptions
✓ Incorporates multi-fault ruptures
✓ Samples a wider range of epistemic uncertainties
✓ Is relatively simple, reproducible, and extensible
✓ Enables hypothesis testing (e.g., GR on all faults?)

GR not applicable to all faults
UCERF3-TI (Time-Independent Model):

- Main report and 20 Appendices in USGS OFR 2013-1165 (also CGS Special Report 228)
- Main report & Appendix N also in BSSA (2014, vol. 104, no. 3)

UCERF3-TD (Long-Term Time Dependent Model)

- Main report published in BSSA (April, 2015)
- USGS Fact sheet also available online

UCERF3-ETAS (Spatiotemporal Clustering Model for OEF)

- Published in BSSA (June, 2017; available online)

The grand inversions is conceptually simple, but a lot of important details have been glossed over here, including uncertainties.
UCERF3 Publications

UCERF3-TI (Time-Independent Model):
- Main report and 20 Appendices in USGS OFR 2013-1165 (also CGS Special Report 228)
- Main report & Appendix N also in BSSA (2014, vol. 104, no. 3)

UCERF3-TD (Long-Term Time Dependent Model)
- Main report & two methodology papers published in BSSA (April, 2015)
- USGS Fact sheet too

UCERF3-ETAS (Spatiotemporal Clustering Model for OEF)
- Published in BSSA (June, 2017; available on line)
Reid’s (1911) Elastic-Rebound Theory:

Rupture probabilities drop on a fault after experiencing a large rupture and build back up with time as tectonic stresses re-accumulate

The basis of all previous WGCEP models:

Problem – WGCEP 2003/2007 algorithm is biased and not self-consistent for un-segmented models
UCERF2 Methodology (from WGCEP 03):

Based on a weight-average of section probability gains

\[
Pr^{U2} = f_r \frac{\sum (P_{s}^{BPT} \dot{M}_o / f_s)}{\sum \dot{M}_o} \approx Pr^{Pois} \frac{\sum \dot{M}_o (P_{s}^{BPT} / P_{s}^{Pois})}{\sum \dot{M}_o}
\]

UCERF3 Methodology:

Based on a weight-average of section recurrence intervals and time-since-last-event

\[
\eta_r = \frac{\sum (T_s / \mu_s) A_s}{\sum A_s}
\]

\[
\mu_{r, \text{cond}} = \frac{\sum \mu_s A_s}{\sum A_s}
\]

\[
Pr^{U3} = Pr^{BPT} \left[\frac{\mu_{r, \text{cond}}}{\mu_r} \right]
\]

\[
Pr^{BPT} = Pr^{BPT} (\eta_r, \frac{\Delta T}{\mu_{r, \text{cond}}, \alpha})
\]
UCERF3-TD Elastic-Rebound Model:

✓ Much more self consistent & less biased, as shown by Monte Carlos simulations

✓ Supports magnitude-dependent aperiodicity

✓ Accounts for historic open interval (e.g., last event was sometime before ~1875), so time-dependent model now applied to all faults (which is influential)

✓ Consistent with physics-base simulators (a WGCEP first)

✓ Model is more testable
Recent Earthquakes (less ready):
- 1906 San Francisco
- 1983 Coalinga
- 1952 Kern County
- 1992 Landers
- 1999 Hector Mine

Particularly Ready Faults:
- Hayward
- Calaveras
- Southern San Andreas

Probability gains up to ~2
UCERF3 Publications

UCERF3-TI (Time-Independent Model):
- Main report and 20 Appendices in USGS OFR 2013-1165 (also CGS Special Report 228)
- Main report & Appendix N also in BSSA (2014, vol. 104, no. 3)

UCERF3-TD (Long-Term Time Dependent Model)
- Main report & two methodology papers published in BSSA (April, 2015)
- USGS Fact sheet too

UCERF3-ETAS (Spatiotemporal Clustering Model for OEF)
- BSSA (June, 2017)
Why? Because aftershocks (triggered events) can be large and damaging…

J-tree → Landers → Big Bear → Hector Mine in 1990s

Darfield → Christchurch → M7.8 Kaikoura

Italy 1997-2016

Distribution of main seismic sequences in Italy from 1997 to 02/11/2016

M6.5 Norcia earthquake on 30/10/2016 and its aftershocks
Goal: Operational Earthquake Forecasting (OEF)

Real-time, authoritative information on earthquake likelihoods (including aftershocks) to inform seismic risk mitigation efforts (Jordan and Jones, 2010; Jordan et al., 2011).
The USGS has been releasing aftershock information since the 1980s…

Ad hoc notifications (hand built; slow)

STEP aftershock hazard (2005-2010)

Issues:

1) Nothing is currently operational (automated) outside California

2) Only basic info provided (expected magnitude frequency distribution)

3) Fault information is ignored
Currently Viable OEF Models

1) Reasenberg & Jones (1989)
2) STEP (Gerstenberger et al., 2005)
3) ETAS (Ogata, 1988)

- All imply that the most likely place for the next event is the location of the most recent one (opposite of Reid’s elastic rebound)
- Experts think that fault proximity is important when it comes to triggering large earthquakes
Faults are important…

i.e., **CEPEC** - the California Earthquake Prediction Evaluation Council (which advised the governor/CalOES) gets on the phone when small earthquakes are occurring near the San Andreas Fault.
Faults are important... i.e., CEPEC—the California Earthquake Prediction Evaluation Council (which advised the governor) gets on the phone when small earthquakes occurring near the San Andreas Fault.

In a first for San Bernardino, heightened earthquake risk temporarily closes City Hall

The seismically vulnerable San Bernardino City Hall will be closed through Tuesday in response to a heightened earthquake risk in Southern California, city officials said.

The decision to close City Hall on Monday and Tuesday comes in response to a swarm of earthquakes in the Salton Sea area last week, which temporarily increased the likelihood of a major earthquake in Southern California.
The question: is this M 5 earthquake more likely to trigger something big (e.g., M≥6.7) than this one?

If you answered yes, then you also believe in characteristic MFDs on faults
Currently Viable OEF Models

1) Reasenberg & Jones (1989)
2) STEP (Gerstenberger et al., 2005)
3) ETAS (Ogata, 1988)
4) UCERF3-ETAS (Field et al., 2017)

- Includes faults (considers proximity, long-term event rate, and elastic-rebound readiness)

All these ignore faults
UCERF3-ETAS in a Nutshell

UCERF3-TD + ETAS Model
(Epidemic Type Aftershock Sequence)

An empirically based description of triggering statistics (Ogata, 1998):

\[
(t, x) = \phi(x) + k_0 \delta(M_i, M_{\text{min}}) (t - t_i + \phi) \beta c_q (r + \phi)^q
\]

\(i: t_i < t\)

Main Shock

Primary Aftershocks

Secondary Aftershocks

Tertiary Aftershocks

But now including fault-based ruptures and elastic rebound
UCERF3-ETAS in a Nutshell

Product: synthetic catalog of events (stochastic event set)

ETAS Model
(Epidemic Type Aftershock Sequence)

An empirically based description of triggering statistics (Ogata, 1998):

\[
{l(t,x) = l_0 \max(0) + k_1 10^{a(M-M_{\text{min}})}(t - t_i + c_i - p_i) : t_i < t}\]

- **Main Shock**
- **Primary Aftershocks**
- **Secondary Aftershocks**
- **Tertiary Aftershocks**
UCERF3-ETAS in a Nutshell

Product: synthetic catalog of events (stochastic event set) obtained by doing the following:

- Discretize UCERF3 region into 2 × 2 × 2 km cubes.
- For every observed and simulated M ≥ 2.5 event, we randomly sample a number of triggered events and their origin times (using ETAS parameters).
- For each event, we randomly sample a cube according to the distance decay from parent.
- We then chose a rupture based on the current probability that each can nucleate from within the cube, and considering elastic rebound.
- We also allow spontaneous events to occur, which can also produce aftershocks.

ETAS Model

(Epidemic Type Aftershock Sequence)

\[
l(t, x) = l_{0}m(x) + k_{10}\alpha_{M_{i}} - M_{\text{min}}(t - t_{i} + c_{i}) - p_{i} : t_{i} < t
\]

See BSSA paper for details (bookkeeping is somewhat complicated due to need for elastic-rebound updating and numerical efficiency)

The assumption is that ETAS is an adequate statistical proxy for the physics that causes large-event triggering.
Like all candidate OEF models, we essentially correlate changes in the rate of little earthquakes with the likelihood of having big ones.
M 6.1
Parkfield
Aftershocks
(10 yrs following)

average of
200,000
simulations

Note that the M7.8 1857 Fort Tejon earthquake is believed to have been preceded by an M6.1 Parkfield foreshock (UCERF3-ETAS gives a 6e-3 probability of this occurring)
Aftershocks expected over a week following two main shock scenarios

The average of 200,000 UCERF3-ETAS simulations
M 7.1 “HayWired” Scenario Aftershocks

The average of 200,000 UCERF3-ETAS simulations
CEPEC Notification

Cal OES

CALIFORNIA EARTHQUAKE PREDICTION EVALUATION COUNCIL (CEPEC)

MEMORANDUM

TO: Director, Governor’s Office of Emergency Services
FROM: California Earthquake Prediction Evaluation Council (CEPEC)
DATE: September 27, 2016
RE: The Salton Sea Earthquake Swarm of September 2016

Statement from the California Earthquake Prediction Evaluation Council

At the request of the California Office of Emergency Management, the California Earthquake Prediction Evaluation Council (CEPEC) met by teleconference at 08:30 hrs (PDT) today, September 27, 2016. The purpose of the teleconference was to discuss and evaluate a sequence of small earthquakes (~150+) that are clustered about 10 kilometers southwest of Bombay Beach, Salton Sea area.

The cluster is just west of the projected southern extension of the San Andreas Fault and commenced at 04:03 hrs on September 26, 2016. The majority of the magnitudes have been less than 2.0; however, at 07:30 hrs on September 26, 2016 a M4.3 earthquake occurred, followed by a second M4.3 at 20:23 hrs and a M4.1 at 20:36 hrs. The cluster is located in the southern California geological spreading zone on a small “bookend” fault striking nearly perpendicular to the San Andreas Fault. This cluster is just south of an apparently similar cluster that occurred in March 2009 on an adjacent, subparallel bookend fault.

The close proximity to the San Andreas Fault increases the concern that these earthquakes could trigger a large earthquake (M7.0+ on the San Andreas itself). A major earthquake on this southern portion of the San Andreas Fault has not occurred in over 300 years, so the probability of a large earthquake is thought by some seismologists to be higher than on portions of the fault that have ruptured more recently (e.g. in 1857 and 1906).

CEPEC believes that stresses associated with this earthquake swarm may increase the probability of a major earthquake on the San Andreas Fault to values between 0.03 percent and 1.0 percent for a M7.0 or larger earthquake occurring over the next week (to...
Swarm near Bombay Beach

200,000 UCERF3-ETAS Simulations

Likelihood of something big on nearby SAF

UCERF3-ETAS - 2012 M 4.8 event
UCERF3-ETAS - 2016 Swarm
UCERF3-TD
UCERF3-TI
UCERF3 Summary: we now have a scientifically plausible, operationalizable, end-to-end forecast for California that:

- Relaxes segmentation and includes multi-fault ruptures
- Includes elastic rebound and spatiotemporal clustering
- Generates synthetic catalogs (stochastic event sets)
- Within reach: USGS PAGER- and ShakeCast-type products, but giving risk from triggered events
UCERF3 Summary: we now have a scientifically plausible, operationalizable, end-to-end forecast for California.

Scientific Implications:

Combing spatiotemporal clustering with faults implies a need for both characteristic magnitude-frequency distributions and elastic rebound (longstanding debate settled?)

Practical Implications:

Deploying UCERF3-ETAS as an Operational Earthquake Forecasting (OEF) system will take considerable time, effort, and resources

All models embody assumptions, approximations, and uncertainties, so the question is whether UCERF3-ETAS is right enough to be useful, and useful enough to be worth operationalizing; thus, we need to add valuation to our verification and validation protocol
Does UCERF3-ETAS/OEF have potential value?
Currently Viable OEF Models

1) Reasenberg & Jones (1989)
2) STEP (Gerstenberger et al., 2005)
3) ETAS (Ogata, 1988)
4) UCERF3-ETAS (Field et al., 2017)

All these ignore faults

Is this really more valuable than the other models, especially given it is more computationally expensive?
Does UCERF3-ETAS/OEF have potential value?

Answer depends on:

1) What one is concerned about
Does UCERF3-ETAS/OEF have potential value?

Answer depends on:

1) What one is concerned about

2) The product of interest (the hazard or risk metric)
Does UCERF3-ETAS/OEF have potential value?

Answer depends on:

1) What one is concerned about

2) The product of interest (the hazard or risk metric)

3) What gains would be actionable (compared to long-term averages)
Does UCERF3-ETAS/OEF have potential value?

Answer depends on:

1) What one is concerned about

2) The product of interest (the hazard or risk metric)

3) What gains would be actionable (compared to long-term averages)

4) The decision making timeframe (because gains decay rapidly)
Does UCERF3-ETAS/OEF have potential value?

Example with respect to statewide losses:

How do expected, statewide losses change with time, or after large main shocks?

A Prototype Operational Earthquake Loss Model for California Based on UCERF3-ETAS – A First Look at Valuation

Edward Field, a) MEERI, Keith Porter, b) MEERI, and Kevin Milner, b) MEERI

We present a prototype operational loss model based on UCERF3-ETAS, which is the third Uniform California Earthquake Rupture Forecast with an Epidemic Type Aftershock Sequence (ETAS) component. As such, UCERF3-ETAS represents the first earthquake forecast to relax fault segmentation assumptions and to include multi-fault ruptures, elastic-rebound, and spatiotemporal clustering, all of which seem important for generating realistic and useful aftershock statistics. UCERF3-ETAS is nevertheless an approximation of the system, however, so usefulness will vary and potential value needs to be ascertained in the context of each application. We examine this question with respect to statewide loss likelihoods in time. Significant orders of magnitude in loss likelihoods in time. Significant paper will inspire ascertain whether considerable resource...
Does UCERF3-ETAS/OEF have potential value?

1-year, statewide losses following M 7.1 Hayward main shock

Mean Loss = 24±6 $Billion
(from ~$4 Billion)
1 year
Following HayWired

~14% chance of ≥ $50B
(from ~2%)

Long-term risk

1yr Probability Gain = ~7
Does UCERF3-ETAS/OEF have potential value?

1-year, statewide losses following $M 7.1$ Hayward main shock

Gain decay with time

Answer from commercial loss modelers: probably, but they have a chicken and egg problem in that they can’t build it until someone is willing to pay for it, and clients don’t want to pay until they see some results
Does Some form of OEF have potential value?

Answer depends on:

1) What one is concerned about

2) What product they want (the hazard of risk metric)

3) What gains would be actionable (compared to long-term averages)

4) The decision making timeframe (because gains decay rapidly)

• So we are still in the process of getting answers to these questions (and this may take some time)

• Given budgetary constraints, the USGS will need to partner with stakeholders to go beyond traditional capabilities
What about UCERF4?

- Need time for the community to figure out what we would want to “fix”
- Host workshops in about six months to discuss?
What about UCERF4?

- Need time for the community to figure out what we would want to “fix”
- Host workshops in about six months to discuss?

UCERF3 Questions/Issues/Uncertainties:

1) Artificial distinction between on- and off-fault qks
2) What do modeled faults actually represent (braided?)
3) What is the actual fault interconnectivity?
4) Slip rates (GPS vs geology, backslip, block models)
5) Total regional rate of M≥5.0 events (cat. completeness, temporal changes)
6) Paleoseismic RI interpretations (need site-specific models for the prob of missed events)
7) Defining date-of-last event or historic-open interval on all faults
8) Mmax off modeled faults?
9) Likelihood of multi-fault ruptures (plausibility filter vs physics)
10) 70% aseismicity on faults?
11) Smoothed-seismicity model applicability (deformation model alternatives?)
12) Spatial resolution of Gutenberg Richter assumption
13) Better sampling of viable models (U3 held close to U2; physics narrows solution space?)
14) Manifestation of creep (e.g., area vs slip-rate reduction?)
15) Magnitude-area and slip-length scaling (surface slip obs, depth of rupture)
16) Average slip along rupture (boxcar? multi-rainbow for multi-fault ruptures?)
17) Finite faults + clustering stats requires Elastic Rebound
18) Elastic-rebound predictability (spatial overlap of large aftershocks; COV variations)
19) To what extent can large triggered events nucleate from within rupture area of main shock?
20) Are triggering stats really applicable to larger events, especially sequence-specific ones?
21) Time evolution of MFDs at both low and high magnitudes?
22) Difference between multi-fault rupture and quickly triggered separate event
23) In addition to verification and validation, we also need valuation of our models (all are wrong; is a new one more useful?)

We need physics-based simulators to help solve these
Overview of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3)

Edward (Ned) Field & other WGCEP participants: